KONERU LAKSMAIAH EDUCATION FOUNDATION (KLEF)
 DEPARTMENT OF MATHEMATICS
 PROGRAM DEVELOPMENT DOCUMENT
 M.Sc. (Computational Mathematics)
 Y23-Batch (2023-24)

VISION OF UNIVERSITY:

To be a globally renowned university.

MISSION OF UNIVERSITY:

To impart quality higher education and to undertake research and extension with emphasis on application and innovation that cater to the emerging societal needs through all-round development of students of all sections enabling them to be globally competitive and socially responsible citizens with intrinsic values.

VISION OF THE DEPARTMENT:

Department of Mathematics strives to be internationally recognised for academic excellence.

MISSION OF THE DEPARTMENT:

To provide an environment where the students can learn and become competent users of Mathematics and Mathematical application also to emerge as a global center of learning, academic excellence and innovative research.

MISSION STATEMENTS :

M1. To create an ambience of Mathematical thinking and applying the same to solve complex engineering problems.

M2. To Develop Mathematical model to solve problems at global level.

M3. To collaborate with other campus entities, individuals, professional associations and local community organizations.

GOALS OF THE UNIVERSITY:

1. To offer academic flexibility by means of Choice based credit systems and the like.
2. To identify and introduce new specializations and offer programs in emerging areas therein.
3. To incorporate into the curriculum the Application orientation and use high standards of competence for academic delivery
4. To design and implement educational system adhering to outcome based International models.
5. To introduce and implement innovation in teaching and learning process to strengthen academic delivery.
6. To offer academic programs at UG, PG, Doctoral, Post-Doctoral which are industry focused, and incorporates Trans-discipline, inter-discipline aspects of the education system.
7. To deliver higher education that includes technologies and meeting the global requirements.

PROGRAME EDUCATIONAL OBJECTIVES:

The Program Educational Objectives (PEOs) are as follows:

PEO-1: Apply mathematics and technology tools (MATLAB) to solve problems.
PEO-2: Understand the use of mathematical tools and concepts in other fields.
PEO-3: Communicate, and work, with people of diverse backgrounds in individual and group settings, in an ethical and professional manner.

PEO-4: Critically analyze information and concepts to adapt to advances in knowledge and technology in the workplace.

PROGRAMME OUT COMES (PO) :

Programme Outcomes

PO1 : To identify, formulate, abstract and analyze complex, real life or engineering problems using the principles of mathematical techniques.

PO2 : To apply the mathematical concepts in the fields of high end research and recognize their need and prepare for lifelong learning.

PO3: To apply mathematics tools (MATLAB, R, and MINITAB) for a better decision making in complex situations.
PO4 : To maintain the core of mathematical and technical knowledge which is adaptable for solid foundation for lifelong learning.

PO5 : To apply ethical principles of mathematical techniques for the commitment of professional ethics, responsibilities and socio-economic needs of the society.

PO6 : Ability to do interdisciplinary research among allied subjects related to applied mathematics.
$\mathbf{P 0 7}$: Use symbolic and numerical software as part of practical computation.

Mapping of GOALS with MISSION:

Academic Goals	Mission Statements			
	M1	M2	M3	
G1			\checkmark	
G2			V	
G3	\checkmark			
G4			V	
G5		V		
G6		V	V	
G7			V	

Mapping of PEOs with GOALS :

PEOs	Academic Goals						
	G1	G2	G3	G4	G5	G6	G7
PEO1				\checkmark	\checkmark		\checkmark
PEO2		\checkmark				\checkmark	\checkmark
PEO3				\checkmark	\checkmark		
PEO4	\checkmark	\checkmark	\checkmark			\checkmark	

Thrust areas of M.Sc.(Computational Mathematics)			
LOCAL (APIIC)	REGIONAL (APIIC \&Industry Policy-Telangana)	$\begin{aligned} & \text { NATIONAL } \\ & \text { (CII, NSDC) } \end{aligned}$	GLOBAL (World Economic Forum)
Teaching Profession	Teaching Profession	Teaching Profession	Teaching Profession
I.T.Industry	I.T.Industry	I.T.Industry	I.T.Industry
		Industrial_Data Analyst	Industrial_Data Analyst
https://apindustr ies.gov.in/incent ives/Data/APInd ustrial_Policy Brochure.pdf	http://industries.telanga na.gov.in/Library/Indus $\frac{\text { tries\%20Policy\%20Boo }}{\mathrm{k} \% 202015 . \mathrm{pdf}}$	https://www.cii.i n/PublicationDet ail.aspx?enc $=$ Ey bQ010ZfuOvvjX hsIi6HufXCGQ 0P2eeL50V8RB +110rIhqmDem Cge6V5b1Dlacjo 8566Ln57lacL9 TgMOjIUmOZ Oi6Jr5TNtAoon 0xFCfmwhuaMe cXQQOIrqpZy DMP2FnxdXCR 3LPk+qb+GfgfX 9vgAnD6+W8FS rQ2ISgF545Xgy OTMwEP/zp5U QKwidAVU	$\begin{aligned} & \frac{\text { https://www3.weforu }}{\text { m.org/docs/WEF_Fut }} \\ & \text { ure_of_Jobs.pdf } \end{aligned}$
https://www.rgu kt.in/pdfdoc/GO 142019HigherE ducationDeptGo vtofAP.pdf	https://www.aicteindia.org/downloads/reg $\frac{\text { paydiploma- 220110.pd }}{\underline{\mathrm{f}}}$	https://www.aicte india.org/downlo ads/regpaydiploma_2201 10.pdf	https://www.aicteindia.org/downloads/re gpaydiploma_220110.p df

Mapping of needs with Mission:

Local, Regional, National and Global Needs		Mission Statements			
		M 1	M 2	$\begin{gathered} \mathbf{M} \\ \mathbf{3} \end{gathered}$	
Local Needs	Teaching Profession	\checkmark	\checkmark		
	I.T.Industry	\checkmark	\checkmark		
Regional Needs	Teaching Profession	\checkmark	\checkmark		
	I.T.Industry	\checkmark	\checkmark		
National Needs	Teaching Profession	\checkmark	\checkmark	\checkmark	
	I.T.Industry	$\sqrt{ }$	\checkmark	\checkmark	
	Industrial Data Analyst	\checkmark	\checkmark	\checkmark	
Global Needs	Teaching Profession	\checkmark	\checkmark	\checkmark	
	I.T.Industry	\checkmark	\checkmark	\checkmark	
	Industrial Data Analyst	\checkmark	\checkmark	\checkmark	

Courses to be Introduced in 2023-24 Curriculum as per Local, Regional, National and Global Needs:

Local, Regional, National and Global Needs		Courses to be introduced in 2023-24 curriculum as per identified needs
	Teaching Profession	23CM1101-Linear Algebra 23CM1104-Numerical Methods
Local Needs	I.T.Industry	23UC1101- Communication Skills 23CM1105- Problem Solving using C 23CM1203- Probability and Statistics using R 23CM1204- Matrix Computation using Python
Regional Needs	Teaching Profession	23CM1102-DBMS 23CM1103-Discrete Mathematics
	I.T.Industry	23CM1201- Essential of Research Design 23CM1202- Data Structures and Algorithms 23CM2101- Operations Research 23CM2102-Mathematical Methods
National Needs	Teaching Profession	23CM2103- Stochastic Processes
	I.T.Industry	23CM2104-- Soft Computing 23CM2105- Deep Learning
	Industrial Data Analyst	23CM2106- Cyber Security 23CM2107- Big Data Analytics 23CM2108- Cognitive Engineering 23CM2109- Ethical Hacking
Global Needs	Teaching Profession	23CM2103- Stochastic Processes
	I.T.Industry	23CM2104-- Soft Computing 23CM2105- Deep Learning
	Industrial Data Analyst	23CM2106- Cyber Security 23CM2107- Big Data Analytics 23CM2108- Cognitive Engineering 23CM2109- Ethical Hacking

MAPPING OF PEOs with MISSION OF THE DEPARTMENT:

S.No	Description of PEOs	Key Components of Mission		
		M 1	M 2	M 3
		To create an ambience of Mathematical thinking and applying the same to solve complex engineering problems.	To Develop Mathematical model to solve problems at global level	To collaborate with other campus entities, individuals, professional associations and local community organizations.
$\begin{array}{\|l} \text { PEO } \\ 1 \end{array}$	Apply mathematics and technology tools (MATLAB) to solve problems.	\checkmark		.
$\begin{aligned} & \mathrm{PEO} \\ & 2 \end{aligned}$	Understand the use of mathematical tools and concepts in other fields.			\checkmark
$\begin{array}{\|l} \text { PEO } \\ 3 \end{array}$	Communicate, and work, with people of diverse backgrounds in individual and group settings, in an ethical and professional manner.			\checkmark
$\begin{aligned} & \text { PEO } \\ & 4 \end{aligned}$	Critically analyze information and concepts to adapt to advances in knowledge and technology in the workplace	\checkmark	\checkmark	

MAPPING OF POs/PSOs with PEOs:

$\underset{\text { No. }}{\substack{\text { No. }}}$	Key Components of POs and PSOs	Description of PEO			
		Apply mathematics and technology tools (MATLAB) to solve problems.	Understand the use of mathematical tools and concepts in other fields.	Communicate, and work, with people of diverse backgrounds in individual and group settings, in an ethical and professional manner.	Critically analyze information and concepts to adapt to advances in knowledge and technology in the workplace
		PEO 1	PEO 2	PEO 3	PEO 4
PO1	To identify, formulate, abstract and analyze complex, real life or engineering problems using	\checkmark	\checkmark		\checkmark
PO2	To apply the mathematical concepts in the fields of high end research and recognize their need and prepare for life	\checkmark	\checkmark	\checkmark	\checkmark
PO3	To apply mathematics tools (MATLAB, R, and MINITAB) for a better decision making in	\checkmark	\checkmark		\checkmark
PO4	To maintain the core of mathematical and technical knowledge which is adaptable for solid	\checkmark	\checkmark		\checkmark

PO5	To apply ethical principles of mathematical techniques for the commitment of professional ethics,		\checkmark	\checkmark	
PO6	$\begin{aligned} & \text { Ability to do } \\ & \text { interdisciplinar } \\ & \text { y research } \\ & \text { among allied } \\ & \text { subjects related } \\ & \text { to applied } \end{aligned}$		\checkmark		\checkmark
PO7	Use symbolic and numerical software as part of practical computation.	\checkmark			\checkmark

D. Program Articulation Matrix

S.No	Course Code	Course Name		L	T		\mathbf{S}		PO								PSO			
									1	2	3	4	5	6	7	8	1	2	3	4
1	23UC1101	Communication Skills	Core	0	0	4	0	2					5							
2	23CM1101	Linear Algebra	Core	3	1	0	0	4		2										
3	23CM1102	DBMS	Core	3	0	2	0	4			3		5	6	7					
4	23CM1103	Discrete Mathematics	Core	3	1	0	0	4	1						8		2	2	2	8
5	23CM1104	Numerical Methods	Core	3	0	2	0	4	1	2	3						2	1	2	2
6	23CM1105	Problem Solving using C	Core	3	0	2	4	5				4			7		1			

S.No	Course Code	Course Name		L	T		S	Cre dit s	$\begin{aligned} & \mathbf{P} \\ & \mathbf{O} \end{aligned}$											
										2	3	4	5	6	7	8	1	2	3	4
11	23CM2101	Operations Research	Core	3	0	0	0	3	1											
12	23CM2102	Mathematical Methods	Core	3	1	0	0	4	1	2	3		5							
13	23CM2103	Stochastic Processes	Core	3	1	0	0	4												
14	23CM2101	Operations Research	Core	3	0		0	4	1											

Elective-I

S.No	Course Code	Course Name		L	T	P		Cred	PO								P			
								s	1	2	3	4	5	6	7	8	1	2	3	4
1	23CM1205	Data Science	Core	4	0	0	0	4			3									
2	23CM1206	Machine Learning	Core	4	0	0	0	4		2										

Elective-II

S.No	Course Code	Course Name	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$							PO												
						P				1	2	3	4	5	6	7	8	1	2	3	4	
1	23CM2104	Soft Computing	Core	4	0			0	4	1												
2	23CM2105	Deep Learning	Core	4	0			0	4			3										
3	23CM2106	Cyber Security	Core	4	0			0	4					5								

Elective -III

	DEPARTMENT OF MATHEMATICS												
	2020-2021 M.Sc.(App.Mathematics) BATCH Course Outcomes vs Program Outcomes												
$\underset{\text { No }}{\mathbf{S}}$	Course Articulation Matrix												
	Course Code	Course Title			$\begin{aligned} & \mathrm{CO} \\ & \mathrm{NO} \end{aligned}$	Description of the Course Outcome	Program Outcomes						Course Rationale
			LTPS	S			12	23	4	56	7	8	
1	21AM1101	Real Analysis	4-0-0-0	4	CO1	Describe the fundamental properties of the real numbers that lead to the formal development of real analysis.	2					For the students to develop a strong foundation in Real Analysis and the theory of integration	
					CO2	Demonstrate an perceptive of limits and how they are used in sequences, series, differentiation and integration	2			56	7		
					CO3	Describe and apply the important properties of the limit and continuity and the differentiation and integration of the sequences and series of functions. Explain the basic properties of the Riemann integration	2			56	67		

					CO 5	Verify the solution of the ODE through MATLAB.							
					CO1	Apply the rules of Propositional logic to establish valid results and apply rules of valid inference and hence understand how to construct correct mathematical arguments, Mathematical Induction			3	6		7	**********(course rational)
3	21AM1103	Discrete Mathematics	3-1-0-0	4	CO 2	Understand the concept of relations, functions and discrete structures, Count discrete event occurrences , lattices, to represent the Boolean functions by an expression Formulate and solve recurrence relations of homogeneous and non homogeneous relations, understand some recursive algorithms.		2	3		7		
					CO 3	Formulate and solve recurrence relations of homogeneous and non			3		7		

						homogeneous relations, understand some recursive algorithms.						
					CO4	Use graph theory for various techniques to study and analyze different problems associated with computer design, logic design, Formal languages, Artificial Intelligence etc, Analysis of different traversal methods for trees and graphs.		2	3	5	67	
		Introduction to Computer Programming			CO1	Introduction to basic computer organization and computer fundamentals. Introduction to Programming language fundamentals. Illustrate and use Control Flow Statements in C++.	1					
4				4	CO2	Introduction to functions in $\mathrm{C}++$ and Decomposition of programs through function.	1					*********(course rationale)
4				4	CO3	Interpret \& Illustrate user defined C++ functions and different operations on list of data.	1					
					CO4	Illustrate Object Oriented Concepts and implement linear data structures	1					
					CO5	Develop the code for the algorithms in C++	8					
5	21AM1105	MATHEMATI CAL STATISTICS	3-1-0-0	4	CO1	Explain the concepts of random variable, probability distribution, distribution			3			To apply statistics to real time problems

7		Communication and Logical Skills	0-0-4-0	4	CO1	Relating grammar concepts and receptive skills for documenting and editing	2			
					CO2	Able to set goals through SWOT and present themselves effectively during the Interview.		2		
					CO3	Apply and formulate the concepts of mathematical principles besides logic and basic mathematical formulae to solve word based situational problems.		2		
					CO4	Estimate inductive reasoning, to categorize the rules-set from a given list of observations and relate them to predict the conclusions according to the given conditions	2			
8	21AM1201	Abstract Algebra	3-0-0-0	4	CO1	Define group, subgroup and quotient group with examples, and proving some preliminary lemmas		3		
					CO 2	Define homomorphism and automorphisim of groups .Explain Cayley's and Sylow's theorems of finite groups and demonstrate the problems	1			$\begin{gathered} * * * * * * * * *(\text { course } \\ \quad \text { rational) } \end{gathered}$
					CO 3	Define a ring, homomorphismof rings, ideal, quotient rings with examples. Explain principal ideal domain, unique factorization domain, modules over PID theorems and demonstrate the problems.		2		

9	21AM1202	Data Structures	$\begin{aligned} & 3-0- \\ & 2-0 \end{aligned}$	4	CO1	Analyze and compare stack ADT and queue ADT implementations using linked list andapplications	1			4			
					CO 2	Analyze the linked lists and types of Binary trees and their representations	1			4			
					CO 3	Apply measures of efficiency on algorithms and Analyze different Sorting Algorithms, Analyze the linked implementation of Binary,Balanced Trees and different Hashing techniques	1		2				**********
					CO4	Analyze different representations, traversals, applications of Graphs and Heap organization		2		4			
					C05	Develop and Evaluate common practical applications for linear and non-linear data structures	1	2					
10	21AM1203	Statistical Inference	$\begin{aligned} & 3-1- \\ & 0-0 \end{aligned}$	4	CO1	Obtain estimates of parameters and identify the various methods to estimateit.	1						
					CO 2	Apply various principles for the data reduction and draw conclusion about the population based upon samples drawn from it	,	2					*********
					CO3	Describe the tests of significance and draw conclusion about the population and sample using various tests			3				

12	$\begin{gathered} \text { 21AM1 } \\ 205 \end{gathered}$	Complex Analysis	$\begin{gathered} 3-1-0 \\ 0-0 \end{gathered}$	4	CO1	Explain the definition of continuity, differentiability, apply the concepts of analytic function and harmonic function to explain Cauchy-Riemann equations; Understganding Power Series.				
					CO2	Apply the concept of conformal mapping, and describe the mapping properties of Möbius transformations and how to apply them for conformal				

15	$\begin{aligned} & 20 \mathrm{UC1} \\ & 102 \end{aligned}$		1-0-0-4	2	CO1							
					CO 2							
					CO3							
					CO4							

18	21 AM 2103	$3-1-$ $0-0$	4	CO 1

Apply the basic concepts of generalized co-ordinates, Physical Properties of Fluids:Concept of fluids, Continuum

19	21AM2104	Statistics with \mathbf{R} Programming	$\begin{gathered} 3-0-2- \\ 0 \end{gathered}$	4	CO1	Understand the basic functions in R programming and identify the operators using in it.		8

							\square			

ELECTIVE-I

ELECTIVE-II

ELECTIVE III

