KL UNIVERISTY FIRST SEMESTER 2010-11 Course Handout Academic Division

Dated: 07-07-2010

Course No.: EC C201Course Title: Digital Logic DesignCourse Structure: 3-0-2Course coordinator: Dr Habibulla KhanInstructors: M Ravi Kumar, MV Ganesh, P. Srikanth, B.T.P. Madhav,
N. Durga Indira, Naseem Shaik, Praveen.B, T.K. Sasanka

1. Course Description:

Two level and multilevel gate implementations, simplification of logic expressions, logic families. Combination logic circuit design, Sequential logic circuit design. Flip-Flops, Shift registers, Counters, Sequence generators. PLA and PAL, State tables and State diagrams, thereshold logic.

2. Scope and Objective of the Course:

The course is designed for the second year first semester students. The course will provide an over view of the study of logic gates and their applications. The course will give an idea to simplify a given logical expression so that hardware reduction is obtained. Given a problem, the course gives the student an idea to design a logic circuit. Student get an idea about the design of various combinational and sequential logic circuits which are very useful in communications and computers. At the end of the course the student is expected to possess knowledge in designing different types of logic circuits for various applications.

3. Books:

(i) Textbook:

- a. M Morris Mano, "Digital Logic and Computer Design", PHI, 2003.
- b. Ronald J Tocci, "Digital Systems", Pearson Education, 9th Edition.

(ii) Reference Book:

- a. Khan & Khan, "Digital Logic Design", Scitech, 2008
- b. Zvi Kohavi, "Switching and Finite Automata Theory", 2nd Edition, TMH.
- c. RP Jain, "Modern Digital Electronics", 3rd Edition, TMH, 2003

4. Syllabus:

<u>UNIT – I</u>

AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR gates, and their implementation using NAND and NOR gates, two level and multi level NAND and NOR implementations. Types of Boolean expressions, simplifications of Boolean expressions(using Boolean laws and theorems, K-maps up to four variables) Logic Families: Classification and characteristics of logic families, RTL, DTL, TTL, ECL, IIL, MOS and C-MOS logic families and their comparison.

UNIT-II

COMBINATIONAL LOGIC CIRCUITS: General design procedure for Combinational logic circuits, Design and applications of Binary Adders and Subtractors, Comparators, Encoders, Decoders, Multiplexers and De-multiplexers, Design of BCD to 7 Segment Decoder, Code converters, Sequence Generator, Parity Generator and Checker, BCD Adder / Subtractor, Carry look ahead adders, Programmable logic devices, PLA and PAL.

UNIT – III

Flip-Flops - SR, JK, D, T and Master Slave their characteristic equation, characteristic and excitation table, conversion of flip flops, Edge triggering and level triggering,

UNIT – IV

Register – Shift register – universal shift register, Asynchronous /Ripple up/Down counter, mod counters, State table and State diagrams for Flip-Flops

UNIT – V

Threshold Logic: Introduction concepts, Synthesis of Threshold functions, capabilities and limitations of threshold gate.

5.Course Plan:

Course plan is meant as a guideline. There may probably be changes.

Lec	Learning	Topics to be covered	Reference		
No.					
UNIT - I					
1	Introduction	Implementation using NAND/NOR	T1		
		Gates	82		
2	Two level	Implementation of expressions with	T1		
	Implementation	two level NAND/NOR gates.	82-85		
3	Multilevel Implementation	Implementation of expressions with	T1		
		two level NAND/NOR gates.	85-91		
4	Types of Boolean	SOP and POS expressions	T1		
	expressions simplification	minterms and maxterms	37-44		
	using Boolean laws	Simplification of Boolean			
		expressions.			
5	Simplification using	Simplification of Boolean	T1		
	DeMorgan's theorems	expressions using DeMargan's	43-44		
		theorems.			
6-9	Simplification using K-	Types of K-maps.	T1		
	maps	Simplification using K-maps, Don't	64-80		
		care conditions, simplification of			
		POS expressions.			
10	Logic families	Classification and Characteristics of	T1		
		logic families.	398-400		
11	RTL and DTL	Circuit diagram, operation and	T1		
		characteristics of RTL and DTL	408		
12	TTL, ECL, IIL	Circuit diagram, operation and	T1		
		characteristics of TTL, ECL and	410-420		
		IIL.			

13	MOS Logic families	Classification, circuit and	T1
		characteristics of PMOS, NMOS	421-423
		and CMOS.	121 120
14	Comparision of logic	Comparision of various logic	T1
••	families	families.	411
15	Introduction	General design procedure for	T1
		CLC'S and examples of design.	111-115
16	Binary adders	Half adder and full adder Design.	T1
			119-122
17	Binary subtractors	Half and full subtractor Design.	T1 126-128
18	Encoders and Decoders	Design and applications of	T1
-		encoders and decoders.	134, 139
19	DeMulriplexers and	Design and applications of DeMux	T1
	Multiplexers	and Mux.	141
20	BCD – 7-Segment	Design of BCD-7-Segment decoder	R1
-	decoders		4.36
21	Code converters and	Design of various code converters	R1
	sequence	and sequence generators.	6.25
	Generators		••
22	Parity Generators and	Design of odd and even parity	R1
	Checker	generators and checkers.	4.45
23	BCD adder/subtractor,	Design of BCD adder/subtractor	R1
	carry look ahead adder	and carry look ahead adder.	4.53-4.58
24	PLA	What is PLA. Design procedure for	T1
		PLA'S	276
25	PAL	What is PAL. Design procedure for	T1
		PAL	280
26	SR and JK Flip-Flops	Basic SR and JK flip-flops. Design	T1
		of SR and JK flip-flops.	167-169
		Advantages and Drawbacks.	
27	D and T flip-flops	Design of D and T flip-flops.	T1
		Advantages and Drawbacks.	169
28	Master Slave JK flip-flop	Race around condition. Design of	T1
		M/S JK flip-flop.	174
29	Characteristics and	Design of characteristic and	T1
	excitation table	excitation tables of various flip-	177-178
		flops.	
30	Conversion of flip-flops	Design procedure for convert one	R1
		type of flip-flop to other type.	5.23
31	Edge triggering and Level	Edge triggering and Level triggering	R1
•	triggering		5.8
32	Register - Shift register	What is a register. Shift register.	T1
•		Different modes of operations.	217-219
33	Applications of Shift	Applications of Shift registers	T1
	registers, Universal Shift	Design and operation of universal	219
0.4	register	shift register.	225-226
34	Asynchronous counters	Asynchronous counter. Different	T1
~=		types of Asynchronous counters	227
35	Mod Counters	Mod number, Mod counter,	T1
00	O we also as a second	Different types of Mod counters.	239
36	Synchronous counters	Design of synchronous counters	T1 232
37	State tables	Preparation of stable tables for	R1
		various flip-flops.	5.29

38	State diagrams	Preparation of state diagrams for	R1
	_	various flip-flops.	5.29-5.38
39	Introduction	Threshold logic, the threshold	R2
		element	189-190
40	Capabilities and limitations	C & L of threshold logic	R2
			193-195
41	Synthesis of threshold	Unate functions, Geometrical	R2
	networks	representation linear separability	197-202
42-43	Identification and	Identification and realization of	R2
	realization of threshold	threshold functions	202-205
	functions		
44-45	Map as a tool in	Map as a tool in synthesizing	R2
	synthesizing threshold	threshold networks	205-209
	networks		

6.Self learning material:

Unit	Торіс	Source
I	ECL, CMOS	T1
	Design of BCD- 7- segment display	R1
I	PAL	T1
III	Edge triggering	R1
IV	Universal shift register Up/down counter	T1
V	Capabilities and limitations of threshold gate	R2

7.Evaluation Scheme:

Component	Duration (minutes)	% Weightage	Marks	Date & Time	Venue
Test-1	50 Min	7.5	10	10-08-2010 9.30 to 10.20 A.M	CSE001,002, 004, 005, 101, 102,104,105, 106,201,204, 205,301,502, 509, NSH
Test-2	50 Min	7.5	10	14-09-2010 9.30 to 10.20 A.M	CSE001,002, 004, 005, 101, 102,104,105, 106,201,204, 205,301,502, 509, NSH
Assignment submission		3.75	5	Continuous	
Assignment Test	50 Min	3.75	5	26-10-2010 9.00 to 10.20 A.M	CSE001,002, 004, 005, 101, 102,104,105, 106,201,204, 205,301,502, 509, NSH
Quiz	30 Min	3.75	5	26-10-2010 9.00 to 10.20 A.M	CSE001,002, 004, 005, 101, 102,104,105, 106,201,204, 205,301,502, 509, NSH
Regular Lab Evaluation	Continuou s	12.5	50		
Comprehensive Lab Exam	3 Hrs	10	40		
Comprehensive Exam	3 Hrs	45	60		
Attendance for Theory & Tutorial		3.75	5	Continuous	
Attendance for Lab		2.5	10	Continuous	

8. Chamber consultation hour: Informed in the class in first week.

9. Notices: All notices regarding the course will be put in E-learning website.

Course Coordinator