KL UNIVERISTY FIRST SEMESTER 2010-11 Course Handout Academic Division

Dated: 07-07-2010

Course No. : ME C202 / CE C202 Course Title : Fluid Mechanics

Course Structure : 3-1-2

Course coordinator: S Sudhakara Babu

Instructors : K.Shivasathyamohan, K.Srinivasa Rao, MNL Rajeswari,

Sanjay Krishna, B. Bhavani, S.Kanakambara Rao, K.Sandeep Kumar

1. Course Description:

It includes fluid properties, fluid statics-measurements of pressure, buoyancy, floatation, fluid kinematics-discharge, continuity equation, fluid dynamics-Euler's equation, Bernoulli's equation, Venturimeter, Orificemeter, Pitot-tube, orifices and mouth pieces, momentum equation, flow through pipes, boundary layer theory-laminar and turbulent boundary layers, dimensional analysis and model similitude.

2. Scope and Objective of the Course:

After thorough learning of Fluid Mechanics the student should be able to:

- 1. Solve problems related to the fundamental principles of fluid mechanics
- 2. Analyze a control volume by developing fundamental principles such as the linear momentum equation in the treatment of the control volume.
- 3. Discuss and compare fundamental Reynolds Number and fluid flow behaviour observation.
- 4. Decide in advance on the selection of scaling variables and data presentation for dimensional analysis.
- **5.** Name the differences between theoretical analysis and practice through experimental investigation that corrects for the factors omitted from the theory.

3. Books:

(i) Textbook:

- a. Fluid mechanics by SK Som G Biswas, Tata McGraw-Hill Publications.
- b. Fluid mechanics by John F.Douglas, Pearson Publications.

(ii) Reference Book:

- a. Fluid Mechanics by Frank M white
- b. Fluid Mechanics by A.cengel and John M.Cimbala
- c. Fluid Mechnics by G.S sawhney
- d. Fluid Mechanics by Edward J.Shaughnessy

4. Syllabus:

UNIT-I

FLUID PROPERTIES: Definition of fluid, properties of fluid-density, specific weight, specific gravity, viscosity, classification of fluids, surface tension and capillarity, vapour pressure and cavitation.

FLUID STATICS: Introduction, pressure, Pascal's law, hydrostatic law, measurement of pressure-simple and differential manometers, Total pressure and centre of pressure on vertical, horizontal, Inclined and curved surfaces.

UNIT-II

FLUID STATICS-BUOYANCY AND FLOATATION: Buoyancy, centre of buoyancy, Meta-centre, Meta-centric height

FLUID KINEMATICS: Introduction, types of fluid flow, Discharge, Continuity equation, Continuity equation in three dimensional flow, velocity potential function and stream function, vortex flow

UNIT-III

FLUID DYNAMICS: Introduction, Euler's equation of motion, Bernoulli's equation and applications, Venturimeter, Orificemeter, Pitot-tube, coefficient of discharge, Introduction to orifices and mouth pieces.

MOMENTUM EQUATION: Impulse-momentum equation, Force exerted by flowing fluid on pipe-bend.

UNIT-IV

FLOW THROUGH PIPES: Introduction, major and minor energy losses, hagen-poiseuille law, Hydraulic gradient and total energy line, pipes in series and parallel, Transmission of power through pipe, Water hammer.

UNIT-V

BOUNDARY LAYER THEORY: Introduction, laminar, turbulent boundary layer, boundary layer thickness, displacement thickness, momentum thickness, energy thickness, separation of boundary layer, Methods of preventing separation

DIMENSIONAL ANALYSIS & MODEL SIMILITUDE: Introduction, Buckingham's PI theorem, Model analysis, Types of similarities, Dimensionless numbers, Classification of models, Model laws-Reynolds and Froude model law

5.Course Plan:

Course plan is meant as a guideline. There may probably be changes.

Lec No.	Learning Objective	Topics to be covered	Reference
1	Understand what is fluid and their properties	Definition of fluid, properties of fluid-density, specific weight, specific gravity	T1:2-5
2	Understand different types of fluids	viscosity, classification of fluids	T1:5,8
3	Understand fluid properties	surface tension and capillarity,	T1:12,15
4	Understand fluid properties	Vapor pressure and cavitation.	T1:16
5	Understand Fundamental pressure laws	Introduction, pressure, Pascal's law and hydrostatic law	T1:28
6	Understand Pressure measurement device	Measurement of pressure- simple manometers	T1:35
7	Understand Pressure measurement device	Measurement of pressure- differential manometers	T1:2-5
8	Find out total and centre of pressure on plane surfaces	Total pressure and centre of pressure on horizontal and	T1:40,41

		vertical surfaces	
9	Find out total and centre of	Total pressure and centre of	
	pressure on curved surfaces	pressure on inclined and	T1:42
		curved surfaces	
10	Understand the floating	Buoyancy	
	phenomenon		T1:45
11	Understand the floating	Centre of buoyancy	T1:45
	phenomenon	, ,	
12	Understand the floating	Meta-centre	T1:49
	phenomenon		
13	Understand the floating	Meta-centric height	T1:49
	phenomenon		
14	Understand the types of fluid	Introduction, types of fluid flow	T2:127-129
	flow		12.127 120
15	Understand the concept	Discharge, Continuity equation	T2:136,138
16	Understand the concept	Continuity equation in three	T2:141
		dimensional flow	12.171
17	Understand the concept	Velocity potential function and	T1:276
		stream function	11.270
18	Understand the Type of fluid	Vortex flow	T1:282
	flow		
19	Understand the	Introduction, Euler's equation	T1:138
00	Mathematical approach	of motion	
20	Understand the Mathematical	Bernoulli's equation,	T1:148
24	approach Understand the flow control	applications	
21		Venturimeter	T1:196
22	and measuring device Understand the flow control		
22	and measuring device	Orificemeter	T1:199
	Understand the pressure	Pitot-tube, coefficient of	
23	measurement device	discharge	T1:204
	Understand the flow rate	Introduction to orifices	T4 005
24	measuring device		T1:205
0.5	Understand the flow rate	later death at a secret at a	T4.005
25	measuring device	Introduction to mouth pieces.	T1:205
26	Understand the mathematical	Impulse memorium equation	T0:140 140
26	approach	Impulse-momentum equation	T2:148,149
27	Understand the concept	Force exerted by flowing fluid	T2:160
۷,		on pipe-bend.	12.100
28	Understand the flow behavior	Introduction to flow through	T1:192
	through pipes	pipes	11.102
29	Understand the energy	Major energy losses	T1:192
	losses	-,	
30	Understand the energy	Minor energy losses	T1:192-195
	losses		
31	Understand the fundamental	Hagen-poiseuille law	T1:198
22	law		T1.004
32	Understand the concept	Hydraulic gradient	T1:204
33	Understand the concept	Total energy line	T1:206
34	Understand the concept	Pipes in series	T1:441
35	Understand the concept	Pipes in parallel	T1:443
36	Understand the power	Transmission of power	T1:452,515

	transmission through pipe	through pipe, Water hammer.	
37	Understand the types of boundary layers	Introduction, laminar, and turbulent boundary layers	T1:359
38	Understand the boundary layer concepts	Boundary layer thickness, displacement thickness	T1:369
39	Understand the boundary layer concepts	Momentum thickness, energy thickness	T1:369
40	Understand the boundary layer concepts	Separation of boundary layer	T1:373
41	Understand the boundary layer concepts	Methods of preventing separation	T1:377
42	Understand the theorem	Introduction, Buckingham's PI theorem	T1:241,252
43	Understand the concept	Model analysis, Types of similarities	T1:242
44	Understand the dimensionless numbers and Types of models	Dimensionless numbers, Classification of models	T1:249
45	Understand the model laws	Model laws-Reynolds and Froude model law	T1:249

6.Self learning material:

Unit	Topic	Source
I	a) Fluid and their properties	www.ku.edu.np/mech/Tutorials/propFluid.pdf
		http://www.brighthub.com/engineering/civil/articles/4
	b) Pressure and its measurement devices	3777.aspx
II	a) Buoyancy	http://en.wikipedia.org/wiki/Buoyancy
	b) Types of fluid flow	http://www.brighthub.com/engineering/civil/articles/4 7264.aspx
III	a) Venturi and Orifice meters	http://www.engineeringtoolbox.com/orifice-nozzle- venturi-d_590.html
	b) Orifice and Mouth piece	
IV	a) Energy losses of flow	http://www.engineeringtoolbox.com/major-loss-
	through pipes	ducts-tubes-d_459. htmlhttp://udel.edu/~inamdar/EGTE215/Minor_loss.p
	b) Water hammer	df
	,	http://en.wikipedia.org/wiki/Water_hammer
V	a) laminar and turbulent boundary layer	http://www.centennialofflight.gov/essay/Theories_of_ Flight/Skin_Friction/TH11G2.htm
	b) Dimensionless numbers	http://silver.neep.wisc.edu/~shock/tools/fluids_dimnumb.pdf

7.Evaluation Scheme:

Component	Duration (minutes)	% Weightage	Marks	Date & Time	Venue
Test-1	50 Min	8	10	14-08-2010 9.30 to 10.20 A.M	CSE005,101,104, 105,106,201,202, 204,205,209,301, 309,502,509
Test-2	50 Min	8	10	18-09-2010 9.30 to 10.20 A.M	CSE005,101,104, 105,106,201,202, 204,205,209,301, 309,502,509
Assignement submission		4	5	Continuous	
Assignment Test	50 Min	4	5	30-10-2010 9.00 to 10.20 A.M	CSE005,101,104, 105,106,201,202, 204,205,209,301, 309,502,509
Quiz	30 Min	4	5	30-10-2010 9.00 to 10.20 A.M	CSE005,101,104, 105,106,201,202, 204,205,209,301, 309,502,509
Regular Lab Evaluation	Continuous	10	50		
Comprehensive Lab Exam	3 Hrs	8	40		
Comprehensive Exam	3 Hrs	48	60		
Attendance for Theory & Tutorial		4	5	Continuous	
Attendance for Lab		2	10	Continuous	

- 8. Chamber consultation hour: Informed in the class in first week.
- 9. Notices: All notices regarding the course will be put in E-learning website.
- **10.Tutorial:** Tutorial will be conducted by the respective in charge faculty. The tutorials are planned to supplement the material taught in the lectures and clear doubts. Student must attend registered section for tutorial in the respective classroom. Class assignment, class tests and other evaluation components will also be conducted during tutorials. Students must actively participate in the tutorial and come prepared for it.

Course Coordinator