

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ❖Approved by AICTE ❖ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 - 3500122, 2576129

Department of Civil Engineering Program: M. Tech - Structural Engineering Academic Year: 2019-2020

Course Code	Course Name	Description of Course Outcome
	5 20 S	Understand the Laplace Transformations and Fourier Transformations concept
	Applied Mathematics	Understand the Elliptic Equation concept for both Laplace Transformations and Fourier
		Transformations
		Understand the concept of Calculus of Variations
		Understand the concept of Eigen value problems and numerical integration
		Analysis of Two-dimensional problems in rectangular coordinates
	Theory of Elasticity	Analysis of Two-dimensional problems in polar coordinates
		Understand the energy principles
		Understand and analyse the torsion related problems
	Design of Offshore	Understand the Wave Theories and Forces on Offshore Structures
		Understand the Offshore Soil and Structure Modelling
		Analysis of Offshore Structures
		Design of Offshore Structures
	Stability of Structures	Introduction to buckling of columns
		Analysis of lateral buckling of beams
		Analysis of lateral buckling of plates and shells
		Understanding the Mathematical treatment of stability problems
	Structural Dynamics	Solve response of free and forced vibrations
		Solve response to Arbitrary, Step and Pulse Excitations (SDOF)
		Solve Earthquake Response of Linear Systems (SDOF)
		Build Generalized Single Degree of Freedom Systems
		Solve response of Multi-degree of freedom systems (MDOF)
		Understand the concepts of prestressed concrete and analyze the prestressed concrete beams.
	Advanced	Analyze losses in prestressed concrete and deflection of the prestressed concrete members
8 CE 5104	Prestressed	Design reinforcement for Ultimate shear, torsion and bending of prestressed concrete members.

	Concrete	Design end blocks as per IS 1343 recommendations.
		Design of prestressed members, composite sections, continuous prestressed beams
18 CE 5205		Understand the Basic Finite Element Concepts
	Finite Element Analysis	Analysis of Trusses, Beam Bending, Structural Frames and Column buckling using Finite Element
		Methods
		Analysis of Higher order elements for one dimensional problems and Isometric quadrilateral
		elements and triangular
		elements
		Analyse the applications based on general two-dimensional boundary value problem
		Demonstrate the ANSYS software to develop the models using Finite element method
18 CE 5206	Bridge Engineering	Introduction to different types of bridges and codal provisions for designing the bridge components.
		Analysis and Design of slab Culvert.
		Analysis and Design of T-Beam, sub-structure components and bearings
		Understanding the designing of cable supported bridges.
		Understanding the designing of cable supported bridges.
	Earthquake	Understand the system of base isolation in structures for resistance towards earthquakes and
18 CE 5207	Resistant Design of Structures	general detailing
		requirements of ductile structure.
		Analyze a structure for earthquake forces onto the structure under static and dynamic behavior.
		Design the structure for earthquake forces on 2 –storey building
	Theory of Plates and Shells	Derive the pure bending and curvature of plates
18 CE 5208		Derive the differential equation for laterally loaded rectangular plates
		Derive the deformation of shells without bending
		Understand the general theory of Cylindrical shells
	Repair and Rehabilitation of structures	Understand the concept of Deterioration of structures with aging, Need for rehabilitation
18 CE 51A1		Understand the damage level of structures affected due to seismic loads, Damage assessment and
		evaluation models
		Understand procedure of rehabilitation methods like Grouting; Detailing; Imbalance of structural
		stability
		Understand the retrofitting methodology and procedure
18 CE 51B1	Geotechnical Earthquake Engineering	Knowledge of the seismic phenomenon, its occurrence, tectonic theories, seismic waves and their
		motion in different media and measurement of ground motions. Analysis skills of 1-D ground
		responses using linear and non-linear approaches
		Ability to analyze seismic hazard through deterministic and probabilistic approaches. Ability of
		modifying the
		actual ground motion records and their time and frequency domain generation.
		Knowledge of dynamic soil properties and their measurements using field and laboratory tests.

Sts.

Dr. P. V. HEAD

HEAD

Department of Civil Engineer

Department of Educational Formula to be University

Dearmal to b

1		Onderstanding the design criteria of ran structures
		Understanding the Loadings On Tall Structures
18CE52C2	Structures	Understanding the behavior of Rigid-Frame Structures and Shear Wall Structures
		Understanding the behavior of Tubular Structures
		Dynamic analysis on Tall structures
18CE52C3		Understanding the Basics of engineering analysis and design
		Understanding the optimization methods
1	Structures	Introduction to variational methods of sensitivity analysis, shape sensitivity
		Introduction to genetic algorithm and simulated annealing
		Analysis and design of portal frames, Design example for hinged and fixed frame and Design of
18CE52D1		Reinforced concrete
1		deep beams
		Design of Elevated water tanks; Earthquake resistant design
		Introduction to plastic analysis
18CE52D2	Fracture	Understanding the basic concepts of Fracture and Linear Elastic Fracture Mechanics (LEFM)
		Understanding the concept of Crack Tip Plasticity
		Understanding the concept Elastic Plastic Fracture Mechanics (EPFM)
		Understanding the concept of Fatigue Crack Growth and practical problems of fracture mechanics
10 05 500		Understanding the concept of green buildings and practices
18 CE 52D3		Understanding the Green Building Opportunities and Benefits and Green Building Design
		Understanding the concept of optimal air conditioning
		Design of Power plant and transmission Structures
18 CE 52C1	maustriai	Design of Auxiliary Structures
	Structures	Understand the Planning and Functional Requirements of Industrial Building improvement.

Academic Professor I/C

Dr. P. HOD-CEAJU HEAD

HEAD

Department of Civil Engineering

Coneru Lakshmaiah Educational Foundation
(Deemed to be University)

Vaddeswaram Guntur District.