## Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ◆Approved by AICTE ◆ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129

## Department of Electronics and Communication Engineering

Program: M. Tech - VLSI Academic Year 2023-2024

| <b>Course Code</b> | Course Name                                                        | CO NO | CO Description                                                                                                                                          |
|--------------------|--------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23VL5001           | Transformation Techniques, Random Variables & Stochastic Processes | 1     | Apply Mathematical models of random phenomena and solve probabilistic problems.                                                                         |
|                    |                                                                    | 2     | Analyze different types of random variables and compute statistical parameters of the random variables.                                                 |
|                    |                                                                    | 3     | Apply random processes in the time domain and model time-varying linear systems.                                                                        |
|                    |                                                                    | 4     | Analyze random processes in frequency domains and model spectral characteristics of LTI systems.                                                        |
| 23VL5101           | MoS Circuit Design                                                 | 1     | Apply basic concepts of VLSI design flow, Design styles,IC fabrication ,layout design rules for CMOS circuits. and MOS transistor and circuit modeling. |
|                    |                                                                    | 2     | Explain and Analyze MOS static characteristics and interconnect effects.                                                                                |
|                    |                                                                    | 3     | Demonstrate the design concepts of Combinational and Sequential MOS logic Circuits.                                                                     |
|                    |                                                                    | 4     | Apply Combinational and Sequential MOS logic Circuits to build different Dynamic logic circuits                                                         |
|                    |                                                                    | 5     | Construct of Various CMOS Circuits using EDA Tools.                                                                                                     |



|                                                   |                                               | 1 | Understand and apply the Verilog HDL                                                                                                                                                                    |
|---------------------------------------------------|-----------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23VL5102                                          | Digital VLSI Design                           | * | concepts for combinational logic.                                                                                                                                                                       |
|                                                   |                                               | 2 | Understand and apply the Verilog HDL concepts for sequential logics                                                                                                                                     |
|                                                   |                                               | 3 | Apply the synchronous design and ASM techniques in design of digital systems                                                                                                                            |
|                                                   |                                               | 4 | Analyze the reliabilty of digital systems by applying testing techniques                                                                                                                                |
|                                                   |                                               | 5 | Design of various digital systems by using EDA tools                                                                                                                                                    |
|                                                   | Analog IC Design                              | 1 | Application of the MOS transistors for the design of single stage amplifiers.                                                                                                                           |
|                                                   |                                               | 2 | Analysis and design of active & passive current Mirrors and the differential amplifiers with qualitative and quantative analysis.                                                                       |
| 23VL5103                                          |                                               | 3 | Analyze the CMOS Op Amps, and various types of Op Amps with qualitative and quantative approaches.                                                                                                      |
| End V had digital                                 |                                               | 4 | Analyze the high frequency response of CS, CG and CD amplifiers and noise analysis of various amplifiers and analysis of non-linear analog circuits like switched capacitor circuits, PLL, ADC and DAC. |
|                                                   |                                               | 5 | Design and analysis of various MOS analog circuits using Cadence/ LT-SPICE environment for real time applications.                                                                                      |
| 23EC5101 Artificial Intelligence Machine Learning | Artificial Intelligence &<br>Machine Learning | 1 | Apply the possibilities offered by AI in finding solutions to domain-independent engineering problems and examine the fundamental blocks for building AI-based computer searches.                       |
|                                                   |                                               | 2 | Analyze machine learning approaches for clustering and classification by demonstrating architecture formulations, learning algorithms, and performance measurements.                                    |
|                                                   |                                               | 3 | Analyze and reconfigure the dimensionality of datasets for training                                                                                                                                     |



|                                                |                                 |                                                                                                                    | and interpret numerically.                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                 | 4                                                                                                                  | Apply optimization algorithms and estimate unknown phenomena.                                                                                                                                                                                                                                                                                                                                              |
|                                                |                                 | 5                                                                                                                  | Experiment and design AI models on multiple datasets by providing discriminative analysis of the evaluation metrics.                                                                                                                                                                                                                                                                                       |
| 23IE5149                                       | Term Paper                      | 1                                                                                                                  | The term paper has to be taken up by the MTech Second Semester students. It is based on independent research in one of the areas opted by the student. In a term paper, a student should demonstrate his/her ability in finding out the relevant sources, selection, an illustration of logic, and in organizing the information on the topic, gathering the data, processing, analyzing, and summarizing. |
| 23UC5202 Algorithms For VLSI Design Automation |                                 | 1                                                                                                                  | Apply the Algorithmic Graph Theory for the shortest path identification of the graph.                                                                                                                                                                                                                                                                                                                      |
|                                                |                                 | 2                                                                                                                  | Apply and analyze Placement, Floor planning and Routing with suitable algorithms                                                                                                                                                                                                                                                                                                                           |
|                                                | 3                               | Apply and realize the Physical Design cycle for FPGA's partitioning and routing for segmented and staggered models |                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22VL5103                                       | Low Power VLSi System<br>Design | 1                                                                                                                  | Understand the physics of power in CMOS circuits                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                 | 2                                                                                                                  | Analyses probabilistic power analysis and apply low power techniques at circuit level for CMOS circuits                                                                                                                                                                                                                                                                                                    |
|                                                |                                 | 3                                                                                                                  | Apply low power techniques at gate level, architecture level and system levels                                                                                                                                                                                                                                                                                                                             |
|                                                |                                 | 4                                                                                                                  | Realize essential tasks in algorithm and architecture level low power design environments and Apply low power clock tree distribution techniques to create low power                                                                                                                                                                                                                                       |



|                  |                             |   | devices                                                                                                      |
|------------------|-----------------------------|---|--------------------------------------------------------------------------------------------------------------|
|                  |                             | 5 | Experiment and design VLSI circuits with various low-power techniques using the Cadence VLSI design suite.   |
| 22VL5103 ASIC an | ASIC and FPGA Design        | 1 | Understand the physics of power in CMOS circuits                                                             |
|                  |                             | 2 | Analyses probabilistic power analysis and apply low power techniques at the circuit level for CMOS circuits  |
|                  |                             | 3 | Apply low power techniques at gate level, architecture level and system levels                               |
|                  |                             | 4 | Realize essential tasks in algorithm and architecture level low power design environments.                   |
|                  |                             | 5 | Experiment and design VLSI circuits with various low-power techniques using Cadence VLSI design suite.       |
| 22VL5503         |                             | 1 | Understand nanoelectronics and shrink-down approach                                                          |
|                  | Nano Electronics            | 2 | Interpret the concept behind nano MOSFET and nanodevices                                                     |
|                  |                             | 3 | Apply and Analyze the Schrodinger equation for different types of potentials in one dimension                |
|                  |                             | 4 | Understand the process of nanofabrication and characterization facilities                                    |
| 23VL5401         | TESTING OF VLSI<br>CIRCUITS | 1 | Understand the Testing Strategies of Digital Circuits and Fault Modeling Analysis.                           |
|                  |                             | 2 | Interpret the Test Pattern for Testable Combinational & Sequential Circuits                                  |
|                  |                             | 3 | Apply Adhoc DFT Techniques, Scan<br>Chain Design Rules and test pattern<br>generation for BIST Architectures |
|                  |                             | 4 | Apply the Faults in Digital Circuits and<br>Memory Architectures                                             |



|           |                                  | 5 | Design and Analyze a Digital Circuit using testing methods                                      |
|-----------|----------------------------------|---|-------------------------------------------------------------------------------------------------|
| 23Vl.51Q1 | IC Fabrication<br>Technology     | 1 | Ability to understand the Concepts of design methodologies in routing and layout                |
|           |                                  | 2 | Understand different levels of modelling of digital circuits and scheduling                     |
|           |                                  | 3 | Ability to understand the FPGA Technologies for development of physical design                  |
|           |                                  | 4 | Analyze the routing and distribution of cells in ICs                                            |
| 23VL51Q2  | System-on-Chip                   | 1 | Acquire knowledge about Top-down SoC design flow                                                |
|           |                                  | 2 | Understand the system level design of communication networks.                                   |
|           |                                  | 3 | Apply system level design and analyze MPSoC concepts                                            |
|           |                                  | 4 | Acquire knowledge about NoC                                                                     |
| 23VL51Q4  | Semiconductor Device<br>Modeling | 1 | Understand the basic device physics and study of MOS capacitor                                  |
|           |                                  | 2 | Understand and study of MOSFET physics and characteristics.                                     |
|           |                                  | 3 | Understanding the energy band diagrams of BJT and time dependent analysis.                      |
|           |                                  | 4 | Understanding the concepts of designing of emitter, base and collector and study of modern BJT. |

Academic Professor I/C

Dr. M. SUMAN
Professor & Head
Department of ECE
KLEF
Green Fields, Vaddeswaran.
Guntur Dist., A.P. PIN: 522 507