

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956) Accredited by NAAC as 'A+++' *Approved by AICTE * ISO 21001 2018 Cartified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.ln; www.klef.edu.in; www.kluniversity.in

Admin Off: 29-36-38, Musinum Road, Governorpel, Vijayawada - 520 002, Ph; +91 +866 - 3500122, 2576129

Department of Electrical and Electronics Engineering Program: M. Tech – Power Electronics & Drives

Academic Year: 2018-2019

Course	Course Title	СО	Description of the Course Outcome
Code		NO	
18EE5109		CO1	Apply the basic concepts of Electromagnetic Energy Conversion
	Modeling and		Principles to DC Machines
	Analysis of Electrical Machines	CO2	Understand the performance of electrical machines through
			mathematical modeling
		CO3	Illustrate the dynamic behaviour of electrical machines under different
			operating conditions
		CO4	Analysis of special machines
•		CO1	Analyze the various 3-phase controlled rectifiers and power factor
			correction converters with different load and
		CO2	Analyze the performance of Switch-Mode PWM and different control
	Analysis of		techniques for Inverters
18EE5110	Power	CO3	Analyze the performance of dc-dc switch regulators with CCM and DCM
	Converters		operation.
•5		CO4	Understand the operations and performance of various ac-ac regulators
083			with different loads and its.
		CO5	Demonstrate and test basic power electronic converters by hardware
·			realization and MATLAB software.
		CO1	Analyze ac-dc and dc-dc converter fed DC motor drives
		CO2	Understand converter fed stator side control of Induction Motor drives.
	Power	CO3	Analyze rotor side control and slip power recovery scheme of 3-phase
18EE5111	Electronic		Induction Motor drives
	Control Of	CO4	Analyze frequency control of Synchronous Motor drives for variable
	Drives		speed operation
		CO5	Demonstrate and test various electrical drives by hardware and MATLAB
			software tools.
		CO1	Understand the basics of Z-Transforms and Digital control systems DCS
			components
18EE5104		CO2	Apply various stability analysis technics to digital control systems
	Modern	CO3	Apply various stability analysis technics to non-linear control systems
	Control Theory	CO4	Apply the basics of optimal control problem to state feedback controller
			design
		CO3	Understand the operation of off shore wind power plants
		CO4	Analyze the operation of floating solar and off shore power system

Professor & Head Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, GUNTUR Dt., A.P - 522 500

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' & Approved by AICTE ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA, Phone No. +91 8845 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin 0ff: 29.38-34, Museum Broad, Governorped, Vijuyawada 600 002 Ph: +01 - 668 - 3500122, 2676128

	Advanced 18EE5113 Power Converters	CO1	Analyze the concepts of Resonant switch Converters, L-type, M-type, Load resonant converters
		CO2	Analyze the operation of soft switched isolated converter and Quasi resonant inverter
18EE5113		CO3	Analyze the concept of Z-source to inverter and analyze the concept of multi-level to inverters, Analysis and comparison of Multi level Inverters
Conve	out of the s	CO4	Apply different PWM techniques for Multi-level inverters, Apply the Concept of Matrix converter for direct AC-AC conversion
		CO5	Analyze the concepts of Advanced power converters through Lab experiments
		CO1	Understand the modeling of AC machines
	1-	CO2	Contrast the speed control performance of 3-Phase induction and
	Advanced Electrical Drives		synchronous motor drive using vector control methods
18EE5114		CO3	Analyze the dynamic behavior of SRM motor drives under various control methods
2		CO4	Distinguish the performance of BLDC Motor drive using various control techniques
18EE5116	FPGA controllers and Applications	CO1	Understand the neural network, different architectures with different learning types and various algorithms for ANN to solve the load forecasting problems in Power systems.
		CO2	Apply the fuzzy logic concept, fuzzy sets, with suitable membership function with proper de-fuzzification method to control the load frequency in power systems
		CO3	Understand the Genetic algorithm, encoding, Genetic operators, Reproduction operators, mutation operators, fitness functions, Genetic modeling
		CO4	Apply the different cross over methods and their elitism, convergence of algorithm and able to develop and analyze the algorithm to economic dispatch problem.
18EE5207	Smart Grids Technologies	CO1	Understand the basic concepts of smart grid, terminology, challenges and initiatives.
		CO2	Understand various smart operations of power system structure, components, and monitoring techniques.
		CO3	Apply smart metering and advanced metering infrastructure with monitoring, protection and measuring units.
		CO4	Apply various communication protocols and cyber-security importance in smart grid.

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. It/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' & Approved by AICE & ISO 21601/2018 Cartified
Campus: Green Fields, Vaddeswaram - 522 302. Guntur District, Andhra Pradesh, INDIA,
Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.adu.in; www.kluniversity.in
Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 - 3500122, 2576128

		CO1	Outline functional and operational features of PIC18C7X micro-controller
18EE51E1	Microcontrolle	CO2	Demonstrate programming of PIC18C7X
	rs and	CO3	Develop interfacing of PIC18C7X to analog and digital controller
	Applications		components
		CO4	Apply PIC18C7X programming to real time control applications
		CO1	Understand PSPICE modeling of power semiconductor devices and
	Digital		passive components behavior with protection circuits.
	Simulation of	CO2	Analyze performance of AC-DC controlled, uncontrolled converters and
18EE51E2	Power		DC-DC converters using Pspice and Matlab Simulink model.
*	Electronic	CO3	Evaluate DC-AC converters performance using modern simulation tools.
*	Systems	CO4	Analyze AC voltage controller and cyclo-converter performance with
			programming and simulation tools.
	Industrial Control	CO1	Outline switch mode power supplies for Industry usage
18EE51E3		CO2	Demonstrate Industrial control process electronic components
	Electronics	CO3	Identify opto-electronic applications to industrial processes
		CO4	Apply control of servo-motor based industrial processes
		CO1	Demonstrate model, learning and training methods of Artificial Neural
	Soft		networks
18EE51F1	Computing	CO2	Apply Genetic algorithms to engineering problems
	Techniques	CO3	Demonstrate characteristics of Fuzzy systems
		CO4	Apply Neual networks and fuzzy logic to motor control s
	FACTS Devices	CO1	Interpret the significance of FACTS devices in power system
		CO2	Demonstrate the operation and control of shunt compensation devices
18EE52C1		CO3	Demonstrate the operation and control of series compensation devices
•		CO4	Demonstratetheoperation and applications of special FACTS devices like UPFC and IPFC
:	Power Quality	CO1	Outline basic power quality issues
18EE52D2		CO2	Demonstrate conventional loop control for voltage and current balance
10110101		CO3	Demonstrate DSTATCOM for power quality restoration
		CO4	Apply combined compensation techniques for power quality restoration
	Digital Signal	CO1	Outline components of digital signal processing
		CO2	Demonstrate Architecture of TMS320C5X, TMS320C6X and ADSP-
18EE51B2			21XXprocessors
	Processors and	CO3	Demonstrate programming of functional units of TMS320C5X,
æ	Applications		TMS320C6X and ADSP-21XX
		CO4	Develop Signal conditioning and PWM applications with TMS320C5X,
		1	TMS320C6X and ADSP-21XX processors

Professor & Head Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, GUNTUR Dt., A.P - 522 502

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as 'A++' -Approved by AICTE -> ISO 21001:2018 Certified
Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA,
Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in
Admin Off: 29-36-30, Museum Road, Governorpet, Vijayaweda - 520 002 Ph: +81 - 866 - 3500122, 2576128

18EE52H2	Electric and Hybrid Vehicles	CO1	Demonstrate Mechanics of Electric vehicle
		CO2	Demonstrate Power train components of Electric vehicle
		CO3	Apply controllers to electric vehicle drive system
		CO4	Outline energy storage systems for Electric vehicles
. 38		CO1	Understand classical optimization techniques, describe clearly the
			problems with and without constraints, identify its parts and analyze the individual functions, Feasibility study for solving an optimization problem.
•		CO2	Apply mathematical translation of the verbal formulation of an
			optimization problem and design algorithms of linear programming
18EE51B3	Optimization Techniques		problems, the repetitive use of which will lead reliably to finding an approximate solution.
		CO3	Analyze and measure the performance of an algorithm of different
*			methods to solve non-linear programming problems, study and solve
			optimization problems.
8		CO4	Analyze optimization techniques using algorithms. Investigate study,
F			develop, organize and promote innovative solutions for various applications.
	Adaptive Control Systems	CO1	Outline elements of propbability and Stochastic processes
18EE52C3		CO2	Demonstrate parametric and non-parmetric system models
		CO3	Interpret adaptive control techniques to linear systems
		CO4	Apply adaptive control process and asses stability of linear systems
	Power	CO1	Interpret Power electronic power modulators for PV power utilization
	Electronics for	CO2	Interpret Power electronic power modulators for wind power utilization
18EE52H3	Renewable	CO3	Illustrate hybrid PV-wind power integration to grid
	Energy Systems	CO4	Demonstrate model, sizing and interface of micro-grids
18EE52D1	EHVAC & HVDC Transmission	CO1	Outline operational parameters of EHV-AC transmission
		CO2	Demonstrate various HVDC links
		CO3	Develop insulation design and coordination for HVDC system
		CO4	Demonstrate mechanical design of towers for HVDC and EHV-AC transmission

Professor & Head Department of EEE KLEF Deemed to be University Green Fields, Vaddeswaram, GUNTUR Dt., A.P - 522 502