

Koneru Lakshmalah Education Foundation
(Category -1, Deemat In the University sold, u/o. 3 of the UGG Act, 1938)
Admirated by NAAC as "A++" - Approved by AlCTE -> ISO 21001-2018 Certified
Camputet Green Fields - Medidestyrung -- 500 000 Carden Dishfet, Andling President, INDNA
Phone No. +91 8645 - 350 200: www.klef.ec.in, www.klef.edu.in, www.kluniversity.in
Admir Off: 20-30-30, Mujerian Razd, Germanath, Mayawata -- 820 odd -- 641 -- 866 - 5000122, 2670129

Department of Electrical and Electronics Engineering Program: M.Tech -ELECTRRICAL & ELECTRONICS ENGINEERING

Academic year: 2023-2024

Course	Course Title	СО	Description of the Course Outcome
Code	20	NO	
		CO1	To develop the skill of contextual Vocabulary and Critical Reading
23UC5201	PROFESSIONAL COMMUNICATION SKILLS	CO2.	· To demonstrate different types of personal and professional skills and apply them for growth in professional zone.
		CO3	Apply the concepts of Mathematical Principles to solve problems on Arithmetic , Algebra & Geometry to improve problem solving ability.
		CO4	Apply the concepts and using Logical thinking to solve problems on verbal & Non-Verbal Reasoning to develop Logical thinking skills.
	MATLAB	CO1	Apply the fundamentals of MATLAB
23EE5207	PROGRAMMING FOR ENGINEERS	CO2	Analyze the characteristics of electrical system using MATI AB.
d es	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	CO1	Understand Conditionals, Iterables, Regex, Files, Error Handling, Data Structures, Algorithm design and Object Oriented Python
23EE5101	PYTHON PROGRAMMING FOR ELECTRICAL SYSTEMS	CO2	Apply object oriented programming, Python Standard Library, SciPy's optimization and Signal Processing and Linear algebra
		CO3	Apply Data Analysis using Pandas. Apply supervised Learning and Unsupervised Learning techniques using Scikit- Learn
		CO4	Analyse real world electrical engineering problems using pandapower and PyPSA for power system modeling, analysis and optimization.
		CO5	Analyze the applications of Python programming for electrical engineering applications
23EE5102		CO1	Analyze the various high power converters and power factor correction.
	ADVANCE POWER CONVERTERS	CO2	Analyze the performance of Switch-Mode PWM and different control techniques of Inverters
		CO3	Apply the principles and usage of multi-level inverters and Z-source inverter.

A-Purl Dr. A. PANDIAN, SMIEEE
Professor & HOD
Professor & HOD
Department of EEE
KLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.

Koneru Lakshmaiah Education Foundation
(Category -1, Deemed to be University estd, u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as "A++ «Approved by AACTE » 1907 2018 Centified
Campute: Green Fields, Welddeswaran - 522 302. Guntur District, Andhra Prakais, INDIA
Phone No. +91 8845 - 350 200; www.klef.ac.in, www.klefe.ed.in, www.kluniversity.in
Admin Off. 29-36-36, Museum Road, Gevernorpet, Vjoyuwata - 520 002, Ptr +91 - 586 - 3500122, 2078129

		CO4	Understand the various applications of power converters
			with solar systems.
		CO5	Demonstrate and test basic power electronic converters by
			hardware realization and MATLAB software.
		CO6	Analyze the various converters application using software tools
		CO1	Understand the power system stability
	POWER SYSTEM	CO2	Apply the small signal stability to power systems
23EE5104	STABILITY &	CO3	Analyze Excitation control and Voltage Stability
	CONTROL	CO4	Analyze power system security control
	N = 99	CO5	Test the small signal stability and power system security using MATLAB
		CO1	Apply the Z and inverse Z-transforms for sampling process
23EE5205	DIGITAL CONTROL	CO2	Analyze the stability of nonlinear systems
23113203	SYSTEMS	CO3	Analyze the formulation of the optimal control problems
		CO4	Analyze the digital controller with bilinear transformation
	240 X	CO1	Apply the modeling aspects of power system components
			and form the network matrices
23EE5103	ADVANCED POWER SYSTEM ANALYSIS	CO2	Apply mathematical methods for the solution of Power flow problem
	& PROTECTION	CO3	Analyze of power system with symmetrical and unsymmetrical faults
		CO4	Apply digital relaying algorithms for protection of power system
	9 - 300	CO1	'Understand the basic concepts of smart grid, terminology,
			challenges, and initiatives.
22555205	SMART GRID	CO2	Identify various smart operations of power system
23EE5206	TECHNOLOGIES		structure, components, and monitoring techniques
		CO3	Apply smart metering and advanced metering infrastructure
	-		with monitoring, protection and measuring units
	(65)	CO4	Understand smart grid appliances
23EE51A1		CO1	Understand the History, Economics, Environmental issues and power train of Electric Vehicles
	ELECTRIC VEHICLE	CO2	Analyze the dynamics of EV
	POWER TRAIN	CO3	Select and size the power train for 2W
	D. 201.011		
	DESIGN	CO4	Select and size the power train for 4W

A. Pull Dr. A. PANDIAN, SMIEEE
Professor & HOD
Department of EEE
KLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.

Koneru Lakshmaiah Education Foundation
(Category - 1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)
Accredited by NAAC as: 'A++ ◆Approved by AICTE ◆ ISO 21001/2018 Cerrified
Campus: Groen Fields, Veddeewaran -522 302, Guntur District, Andhra Pratidesh, INDIA
Phone No. +91 8845 - 350 200: www.klef.ac.in; www.klef.edu.in; www.klefuniversity.in
Admin 0ff: 20 06 30, Masoom Road, devernancet, Vesivawaea - 920 002 Fb + 101 - 886 - 9500122, 2379 [29]

23EE51A2	GRID INTEGRATION OF RENEWABLE ENERGY SYSTEMS	CO1	Apply the acquired knowledge to design and analyze basic
			renewable energy systems with a focus on grid integration.
		CO2	Apply grid integrated techniques for solar PV System
		CO3	Apply grid integrated techniques for wind energy System
		CO4	Apply the grid operation and control methods and standards
		CO5	Analyze the practical skills and techniques effectively integrate renewable energy systems into the grid
23EE51B1	EV BATTERIES & CHARGING SYSTEM	CO1	Understand the characteristics of sensors and actuators used for electric vehicle control
		CO2	Apply various microcontrollers for digital control of electric vehicle
		CO3	Analyze the communication protocols for data communication in electric vehicle control system
		CO4	Analyze the Model fault diagnosis system for electric vehicle
23EE51B2	ENERGY STORAGE SYSTEMS	CO1	Understand batteries' basic chemistry, figure of merits, energy, and power density limits
		CO2	Identify the advantage and disadvantages of using alternative battery types
		CO3	Examine battery testing standards, battery charging systems and state of charge measurement techniques
		CO4	Learn about a variety of applications such as automotive and grid-energy storage systems
	FAULT DIAGNOSIS AND CONTROL OF ELECTRIC VEHICLE	CO1	Analyze the LLC resonant converters topology for EV charger.
		CO2	Apply battery system for EV and cell balancing.
23EE52C1		CO3	Apply the Wireless Power Transfer charging techniques for Electric Vehicles
		CO4	Apply the charger infrastructure system and impact with grid
		CO5	Analyze the EV charger converters using software tools
23EE52C2	. ENERGY CONSERVATION & AUDIT	CO1	Understand the concept of Energy Audit and Energy Management
		CO2	Compare energy efficient motors and normal motors
		CO3	Analyse the different energy instruments and importance of power factor improvement
		CO4	Analyse the economic aspects of electrical energy

I ful Dr. A. PANDIAN, SMIEEE
Professor & HOD
Department of EEE
KLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.

Koneru Lakshmaiah Education Foundation
(Oategory +1, Deemed to be University eard, U.S. 3 of the U.G. Ad., 1956)
Asserted by NAAC as A++ & Approved by AICTE & ISC 21001:2018 Certified
Gampitti Creen Fleids, Violdiamentum 522 502, Cumur Displact Ambins Predesh, INChA
Phone No. +81 8645 - 350 200; www.klefiac.in; www.klefiachum; www.kleninevsity.in
Admin off: 29-36-38, Misseum Road, Governorpet, Viavawaea - 520 002, 91: 191 886 - 5600 122, 2676129

23EE52D1	AI AND IOT FOR MODERN	CO1	Understand the IoT devices and tools
		CO2	Understand the cloud system Environment to EV
	ELECTRICAL	CO3	Applying ML Techniques for Electric Vehicles
	VEHICLES	CO4	Applying AI techniques for EV Applications
40 × 34 43	8 5 BA	CO1	Illustrate Research objects, steps involved in research and
			'articulate appropriate Research Questions
		CO2	Perform Literature Review in a Scholarly style and apply
23IE5201	ESSENTIALS OF		appropriate methods for Data collection
20.20201	RESEARCH DESIGN	CO3	Represent the data in tabular/Graphical form, and prepare
			data for analysis
	res :	CO4	Perform statistical modelling and analysis to optimize the
			data, prepare the data for publishing.
	BATTERY MANAGEMENT SYSTEMS	CO1	Select suitable battery for electric vehicle
		CO2	Analyse the key functions of Battery management systems
23EE53E1		CO3	Analyse various mathematical models of battery
		CO4	Evaluate Algorithms for SOC estimation of battery
	GREEN BUILDINGS AND SMART CITIES	CO1	Understand the principles of green buildings and
		CO2	Environmental impact of buildings
23EE53E2		CO3	Apply the Energy management and conservation strategies
		CO4	Analyze the smart sub-station operation and applications in smart grids.
23EE52D2	AI AND IOT FOR GREEN ENERGY SYSTEMS	CO1	Understand the usage of basic cloud services
		CO2	Apply Embedded Programming to upload sensor data to cloud
		CO3	Analyze the data in cloud through AL/ML Services
		CO4	Develop application for green energy technologies using cloud tools

Dr. A. PANDIAN, SMIEEE
Professor & HOD
Professor & HOD
Department of EEE
MLEF Deemed to be University
Green Fields, Vaddeswaram,
Guntur Dt., A.P., 522 502.