

Koneru Lakshmaiah Education Foundation

(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' & Approved by AICTE & ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302. Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38. Museum Road. Governorpet. Vijayawada - 520 002. Ph; +91 - 866 - 3500122, 2576129

Department of Mechanical Engineering

Program: M.Tech-Machine Design

Academic Year: 2019-2020

S.No	Course Code	Course Title	Co No.	Course Outcome Description
			CO1	Understand Phases of design and associated requisites
١	18ME5117		CO2	Understand Types of design and modelling of the problems
			CO3	Understand Material and manufacturing considerations
			CO4	concepts
	18ME5118	DESIGN WITH ADVANCED MATERIALS	CO1	Understand the properties of Ferrous and Non ferrous materials for suitable applications.
2			CO2	Understand mechanical behavior of the polymer materials and ceramics for engineering applications.
-			CO3	Design composites, Functionally graded materials and smart materials for advanced applications.
			CO4	Design with intermetallic, super alloys and Nano materials to develop a suitable product.
	18ME5119	THEORY OF ELASTICITY AND PLASTICITY	CO1	Understand the significance of compatibility and equilibrium equations. Evaluation of factor of safety against yielding in multi-axial stress state.
			CO2	Solve 2-D elasticity problems in Cartesian and Polar coordinate systems
3			CO3	Analyze the bending of cantilever beams having rectangular and circular cross sections; Axisymmetric stress and deformation in a solid of revolution; and simple 3-D stress analysis problems
			CO4	Understand the plastic deformation and plastic yielding. Solving problems using the characteristic methods and engineering methods.
			CO	To understand various evaluation criteria's for CAD/CAM system and need of graphics standard
			CO	geometric metals
4	18ME5120	MODELING AND ANLALYSIS – I (CAD)	CO:	To represent solid models using different solid represent schemes

Dr. A. SRINATH
PROFESSOR & HEAD
Pepartment of Mechanical Engineer
KL (Deemed to be University)
Vaddeswaram - 522 502

			CO4	To recognize and apply various data exchange formats in geometric modeling and also will be able to apply finite element modeling and mechanical assembly concepts in design applications To apply concepts of geometric modeling in
			CO5	designing using CAD tools Analyze the behavior of single degree of freedom undamped and damped free vibrations using basic
			CO2	principles. Analyze the behavior of single degree of freedom damped forced vibrations using basic principles
5	18M5221	MECHANICAL VIBRATIONS	CO3	Analyze the behavior of two degree of freedom and multi-degree of freedom
			CO4	Analyze the the shafts for critical speeds as well as analysis of transient vibrations based on laplace transform approach.
			CO1	Understanding the basic principles of optimizations and applying various design constraints for solving optimization
6	18ME5222	DESIGN FOR OPTIMIZATION	CO2	problems. Applying various optimization techniques for solving real time applications through Matlab and Python programming
			CO3	Designing of various structural applications by considering static conditions.
			CO4	Designing of various structural applications by
			CO1	Analyse the stresses and deflections in the beams under unsymmetrical bending and determination of shear centre.
7	18ME5223	ADVANCED STRENGTH OF MATERIALS	CO2	Analyse the stresses induced in curved beams subjected to loading.
1			CO3	Analyse the torsional stresses in beams and
			CO4	Apply principles of elasticity to determine stresses in two-dimensional and three dimensional problems.
	18ME5224	MODELING AND ANALYSIS- 2 (ADVANCED FEM)	CO1	Apply finite element method to solve problems in
			CO2	Formulate and solve the Non Linear problems in - Elasto Plasticity and Large displacement formulation.
8			CO3	Formulate the Dynamic Problems problems in free transient and forced vibration.
			CO4	Interpret and Evaluate the quality of fluid mechanics and heat transfer and error estimates and adaptive refinement.
			COS	Gain hands on experience in converting a given structure into desired shape and size by applying suitable ANSYS APDL software
			COI	Understand and apply the measuring tools to machines and instruments.

Dr. A. SRINAIH
PROFESSOR & HEAD
Department of Mechanical Engineerii
KL (Deemed to be University)
Vaddeswaram - 522 502

		PRECISION AND QUALITY	CO2	Understand the different methods and solve the problems of Quality control.
9	18ME5111	ENGINEERING	CO3	Relate the Quality and Reliability and it's associated failure modes.
			CO4	Understand and implement the ISO 9000 series of total quality management.
	18ME51I2	ADVANCED MECHANISMS	CO1	Develop the concepts of different types of mechanism with the mobility and motion
				parameters along with their Application in
				kinematic analysis
10			CO2	Analyze the coupler motion of links by analytical
10			CO2	and graphical method.
			CO3	Apply different method to evaluate the path generation of four bar Mechanism.
				Analyze the Kinematic mechanism using ADAMs
	-		CO4	and different application of R0B0T by D-H
				notation by contrast with forward and inverse
				kinematics
	18ME51I3	CONCURRENT ENGINEERING	CO1	Understand the benefits of Concurrent Engineering and solve the relevant problems.
11			CO2	Understand the concurrent engineering organization and its Philosophies.
			CO3	Understand the System engineering and its
			CO4	Complexity Understand the Conventional Design and
			C04	Development Process.
	18ME51J1	DESIGN OF PRESSURE VESSELS AND PLATES	CO1	Analyze stresses in cylindrical shells and its
				components
12			CO2	Design pressure vessel under various pressure loads
			CO3	Formulate basic equations for bending of plate
			CO4	
			CO1	Understand the surface wear and its treatment
.,	18ME51J2	TRIBOLOGICAL SYSTEM DESIGN	CO2	Analyze the lubricant flow and delivery in different bearings.
13			CO3	Understand the rolling bearings and its failure criterion.
			CO4	performance.
			CO1	
CHAN	18ME51J3	PRODUCT DESIGN & DEVELOPMENT	CO2	
14			CO3	Understand the customer needs to establish the engineering specifications.
			CO4	technique.
			CO1	
	18ME52K1	MECHANICS OF COMPOSITE MATERIALS	CO2	composites and its characterization.
15			CO3	lamina.
			CO4	Understand the strength of Unidirectional lamina
			COI	1
			COI	manufacturing.

Dr. A. SRINATH
PROFESSOR & HEAD
Department of Mechanical Engineering
KL (Deemed to be University)
Vaddeswaram - 522 502

16	18ME52K2	MACHINE TOOL DESIGN	CO2	Design the machine tool structures and speed & feed rate regulation.
			CO3	Design the machine tools beds and guide ways.
			CO4	Understand numerical control of machine tools.
			CO1	Understand Crack growth and fracture mechanics
17	18ME52K3	FRACTURE MECHANICS	CO2	Development of stress field equations in fracture mechanics
			CO3	intensity factors
			CO4	Understand how to perform fracture toughness testing and crack growth phenomenon
	18ME52L1	ENGINEERING NOISE AND CONTROL	CO1	Understand the Noise-Control Strategies.
			CO2	Understand and apply the instruments for noise measurement and analysis
18			CO3	Understand the harmful effects of Noise.
			CO4	Understand and estimate the Noise of Noise associated devices and their control.
			CO1	Familiarizing with failure causes and analysis
	18ME52L2	ENGINEERING FAILURE ANALYSIS AND PREVENTION	CO2	22.11
19			CO3	Exploring Failure problems during processing
			CO4	
20	18ME52L3	DESIGN FOR MANUFACTURING, ASSEMBLY AND ENVIRONMENT	CO1	design.
			CO2	Design and assemble machined components.
			CO3	Identify uneconomical design and redesign the cast components.
			CO4	1 1 6 1 6 4

Professor I/C Academics

Dr. A. SRINATH
PROFESSOR & HEAD
Department of Mechanical Engineering
KL (Deemed to be University)
Vaddeswaram - 522 502