

Koneru Lakshmaiah Education Foundation

(Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as A++ Approved by AICTE & ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38 Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129

Department of Mechanical Engineering

Program: M.Tech-Robotics and Mechatronics

Academic Year: 2020-2021

s.no.	CourseCode	CourseTitle	CO No.	Description of the Course Outcome
1	18ME5101	FUNDAMENTALS OF MECHATRONICS	CO1	Apply the principles of mechatronics and automation for the development of productive and efficient manufacturing systems.
			CO2	Be proficient in the use of Data conversiondevices and Microprocessors controllers and select suitable drives
			соз	Be able to analyze mechanisms for industrial applications and Design and analyze Hydraulic systems
			CO4	Analyze the Pneumatic systems and understand PID controllers, CNC machines and Industrial Robotics.
2	18ME5102	ADVANCED ENGINEERING MATHEMATICS	CO1	Perform elementary operations on matrices including determination of rank and inverse, demonstrate mastery in using matrix algebra
			CO2	Interpret and apply differential calculus onproblems involving rate of change
			CO3	Illustrate the applications of integralcalculus in solving problems on area, volume, displacement, work
			CO4	Determine gradient, divergence and curl ofvector point functions with their properties
3	18ME5103	SENSORS AND ACTUATORS	CO1	Identify appropriate sensor for a particularMechatronic system.
			CO2	Understand micro electro mechanicalsystem and its manufacturing methods
			CO3	Understand the hydraulic and pneumatic Actuation systems for selection ofappropriate actuation method for a particular Mechatronic system.

			CO4	Understand the electrical actuation systems for selection of appropriate actuation method for a particular Mechatronic system.
4	18ME5104	MODELINGAND SIMULATIO N OF MECHATRON IC SYSTEMS	CO1	Build mathematical models mechatronic systems comprising of combinations of mechanical, electrical, pneumatic/ hydraulic and thermal systems
			CO2	Analyze systems for their time response to a certain input using transfer function and /or state space approach
			CO3	Apply system identification techniques tosynthesize system models
			CO4	Evaluate time and frequency response of systems and control system design
			CO5	Modeling and Simulation of MechatronicSystems using MATALAB/Simulink
			CO1	Perform Velocity and Static analysis of Manipulators
	18ME5205	ROBOTICS AND ADVANCED CONCEPTS	CO2	Formulation of equation of motions bycomputer simulations
5			CO3	Apply the Planning and control methodsfor robots
			CO4	Modeling and controlling of flexible manipulators
	18ME5206	CONTROL OF MECHATRONICS SYSTEMS	CO1	Understanding the basic concepts of Modeling, Testing in terms of time domainand frequency domain
			CO2	Analyze the basic designing concepts of Modern and optimal controllers such asstate feedback and state observers.
6			CO3	Analyze the basic designing concepts of Digital controller for digital systems
			CO4	Analyze the basic designing concepts of Non-linear controllers for non-linear systems
	18ME5207	MECHATRONICS PRODUCT DESIGN	CO1	Identify appropriate sensors, identifyappropriate actuation system for a given application.
7			CO2	Identify appropriate microcontroller for a given application and to build a mathematical Model of system for evaluating open loop system performance and behavior.
			CO3	Suggest an appropriate closed loop controlstrategy to attain the desired system behavior.
			CO4	Suggest a Mechatronic product design for a given application and evaluate its performance.

Dr. A. SRINAM.

PROFESSOR & HEAD

Department of Mechanical Engineerii

KL (Deemed to be University)

Vaddeswaram - 522 502

			COI	To understand concept of accuracy, errors& its causes.
8	18ME5208	PRECISION ENGINEERING	CO2	To know about geometrical dimensioningand tolerance
			CO3	To understand concept of surface roughness and learn methods to improve surface finish.
			CO4	To understand precision engineering methods
	18ME51A1	SIGNAL PROCESSING IN MECHATRONIC SYSTEMS	COI	
			CO2	Analyze Frequency filters and phase systems
9			CO3	Design FID and HD City 1211
			CO4	Apply DSP to speech, and Radar signal processing
	18ME51A2	MEMS &NEMS	CO1	Introduction to MEMS and Microelectronic technologies used For MEMS
			CO2	Microsensors & MEMS applications inBiological, Chemical and Acoustic field.
10			CO3	Introduction to MEMS basednanotechnology
			CO4	NEMS physics and NEMS architecture
		ROBOT VISION & IMAGE PROCESSING	CO1	Understand the importance of vision in robotics and mechatronics.
	20ME51A3		CO2	Apply Knowledge of image acquisition techniques using cameras and sensors.
11			CO3	Analyze the images by applying filters, enhancing quality, and reducing noise.
			CO4	Analyze the image segmentation to identify relevant regions of interest
	18ME51B1	EMERGING SMART MATERIALS FOR MECHATRONIC APPLICATIONS	CO1	Study of Smart materials and their application for sensing and actuation, Mechatronics aspects
				Understand the principle of Piezoelectricity and
			CO2	piezoelectric materials, Constitutive equations,
				actuator types and Controls for precise positioning
				and scanning.
				Understand the Basics of Ionic polymer metal
12			СОЗ	composites (IPMC), Conductivity, Carbon nanotubes,
				Dielectric elastomers, Design & control issues and
				Applications of EAP (electro active polymers).
			CO4	Understand the magnetic properties of materials,
				magnetostriction: constitutive equations, types, design
				& control of magneto strictive actuators. Comparative
				analysis of different smart materials.
				Understand the control system concepts and their
	20ME51D2	CONTROL OVERTIME	CO1	relevance in robotics.
	20ME51B2	CONTROL SYSTEMS		

PROFESSOR & HEAD
epartment of Mechanical Engineering
KL (Deemed to be University)
Vaddeswaram • 522 502

		FOR ROBOTS		Apply differential equations and transfer functions to model dynamic systems.
13				Apply PID and state-space techniques to design and implement feedback control
			CO4	Apply the robust control methods to handle uncertainties and disturbances in robotic systems.
	18ME51B3	MICROPROCESSORS AND EMBEDDED SYSTEMS	CO1	Understand the fundamentals of embeddedapplications
			CO2	Architectural understanding of processors through interfacing (8086)
14			CO3	Programming model of microcontroller(8051 family)
			CO4	Interfacing and programming applicationsusing microcontrollers
	18ME52C1	COMPUTATIONAL FLUID DYNAMICS	COI	Understand the fundamentals of CFD and deriving governing equations
15			CO2	Apply different CFD techniques to diffusion problems
			CO3	Solving convection-diffusion problems and N-S equations.
			CO4	Understand numerical grid generation and apply
	18ME52C2	NONLINEAR OPTIMIZATION	COI	Categorize convexity and non-convexityproblems
16			CO2	Apply goal programming methods to solvemodals
			CO3	solve problems with positive coefficients using separable and geometric programming
			CO4	Implement search techniques to solveprogramming
			COI	Understand the mobile robot systems and their diverse
17			CO2	Analyze the kinematics and dynamics of wheeled and
	20ME52C3	MOBILE ROBOTICS	CO3	Apply the knowledge of localization techniques,
			CO	Apply SLAM algorithms for simultaneous mapping and
	18ME52D1	ME52D1 INDUSTRIAL AUTOMATION	СО	Apply principles of automation towards material
			CO	Analyze performance of storage systems and product flow in different GT methods and cellular

18				manufacturing.
			CO3	Application and analysis of transfer line without internal storage and describe Inspection Technology
			CO4	Describe different manufacturing supporting systems.
	18ME52D2	FUZZY SETS AND ARTIFICIAL INTELLIGENCE	CO1	Understanding various concepts Fuzzy Logic System
			CO2	Application of fuzzy Sets in Management, Medical and Engineering Fields.
19			CO3	Introduction to AI, Understand the basic concepts of Artificial Intelligence using various search Techniques
			CO4	Neuro Fuzzy Approaches and Applications of Al in various Domains
	20ME52D3	ROBOT MANIPULATION AND GRASPING	CO1	Understand the robot kinematics and inverse kinematics for manipulator motion analysis.
20			CO2	Apply dynamics principles to calculate forces and torques in robot manipulators
			СОЗ	Analyze the robot motion for planning smooth trajectories.
			CO4	Apply Knowledge of forward and inverse dynamics to calculate robot joint torques and accelerations.

Professor I/C Academics

HOD-ME Dr. A. SRINATH

PROFESSOR & HEAD

Department of Mechanical Engineeri KL (Deemed to be University) Vaddeswaram - 522 502