

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as A++* & Approved by AICTE & ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38 Museum Road, Governorpet, Vijayawada - 520 002, Ph: +91 - 866 - 3500122, 2576129

Department of Mechanical Engineering

Program: M.Tech-Thermal Engineering

Academic Year :2020-2021

S.No	Course	Course Title	Co No.	Course Outcome Description
1	Code 18ME5109	NUMERICAL METHODS IN THERMAL ENGINEERING	COI	Apply mathematical knowledge in Solving an algebraic or transcendental equation, linear system of
			CO2	Apply knowledge of differential equations in appropriate numerical method. Solving the initial boundary value problems and boundary
			CO3	Apply knowledge of finite element methods in selection of appropriate numerical methods to
			CO4	Apply knowledge of engineering and science in consideration the minimum number of mathematical operations involved, accuracy requirements and available computational
2	18ME5110	ADVANCED THERMODYNAMICS	CO1	Apply thermodynamics concepts for various
			CO2	Analyze Phase transition, types of equilibrium and stability, multi component and multi-phase systems, equations of state. Chemical thermodynamics, combustion.
			CO	Analyze the basic concepts of Statistical and Irreversible
			СО	Analyze the behavior of real gas behavior, availability analysis, statistical and irreversible
	3 18ME5111	DESIGN OF THERMAL SYSTEMS	CC	
			CC	Analyze the design of thermal systems by
			CC	Analyze about the problem formulation for

14	18ME5216	MEASUREMENTS IN THERMAL ENGINEERING	CO3	ply various experimental measurement techniques for the measurement of field quantities with probe and non-instructive techniques
			CO4	Evaluate the measurement of derived quantities and analytical methods and design and conduct the experiments, as well as to organize, analyze and interpret data to produce meaningful conclusions and recommendations
			CO1	Analyze the design principles of turbomachinery to improve and optimize its performance
15	18ME52G1	PRINCIPLES OF TURBO MACHINERY	CO2	sign and analyses the performance of Turbo machines for engineering applications
			CO3	Analyze the energy transfer process in Turbomachines and governing equations of various forms.
			CO4	Design various Turbomachines for power plant and aircraft applications
	18ME52G2	GAS TURBINE ENGINEERING	CO1	Apply the concepts of air standard cycle to analyze the performance of ideal and actual gas turbine cycles
16			CO2	Apply gas turbine theory to jet propulsion and understand fabrication techniques of components.
			CO3	Analyse the Performance of compressors and combustion chambers
		v	CO4	Analyze the Performance of gas turbine and cogeneration systems.
			CO1	Apply the concepts of thermodynamics to analyze compression and expansion processes
17	18ME52G3	TURBO COMPRESSORS	CO2	Analyze the performance of compressors and centrifugal blowers
			CO3	Analyze the performance of turbines
	×		CO4	Analyze the Performance of compressors, centrifugal blowers and fans.
			CO1	Analyze the present energy scenario and understand the need of energy conservation
	18ME52H1	ENERGY CONSERVATION, MANAGEMENT AND AUDIT	CO2	Apply various instruments in energy audit
18			CO3	ply various measures of energy conservation and financial implications for various thermal utilities.
				audit the power plants, the various measures for energy conservation and financial implications for various thermal utilities.
			601	Understand concept of various forms of Non- renewable and renewable energy

Dr. A. SRINATH
PROFESSOR & HEAD
Pepartment of Mechanical Engineering
KL (Deemed to be University)
Vaddeswaram - 522 502

	18ME52H2	RENEWABLE ENERGY TECHNOLOGY	CO2	line division aspects and utilization of renewable energy sources for both• domestics and industrial applications
19			CO3	Study the environmental and cost economics of using renewable energy sources compared to fossil fuels
			CO4	Understand the commercial energy and renewable energy sources. Know the working principle of various energy systems
	18ME52H3	SOLAR ENERGY AND WIND ENERGY	CO1	pose to Solar energy and its applications, wind energy and its applications, alternate energy sources
20			CO2	Demonstrate the importance of renewable energy source and various applications of solar and wind systems
			CO3	Preliminary analysis related to wind energy systems and design of solar PV and solar thermal systems
			CO4	Identify the power electronic converters for solar PV and wind energy systems

Professor I/C Academics

HOD

Dr. A. SRINATH PROFESSOR & HEAD

Department of Mechanical Engineer

KL (Deemed to be University)

Vaddeswaram - 522 502