K L UNIVERSITY

DEPARTMENT OF MECHANICAL ENGINEERING

2015-2019 BATCH Course Outcomes Course Articulation Matrix

C NO	G . G .	G -min-	CONO	Description of the C				St	tuder	t Ou	tcom	es			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Remember speech sounds and apply stress and intonation rules to enhance pronunciation skills							2				
1	15EN1101	RUDIMENTS OF COMMUNICATION	CO2	Understand writing strategies and apply those by using the basic and advanced concepts of grammar							2				
1	13EN1101	SKILLS	CO3	Understand the types of texts and tone of the author.							2				
			CO4	Understand the importance of interpersonal skills						2					
			CO1	Model physical laws and relations mathematically as a first order differential equations, solve by an appropriate method and interpret the solution.	2										
			CO2	Model physical laws and relations mathematically as a second/higher order differential equations, solve by an appropriate method and interpret the solution.	2										
2	15MT1001	SINGLE VARIABLE CALCULUS AND MATRIX ALGEBRA	CO3	Obtain the Fourier series expansions of periodic functions and use the series to solve differential equations.	2										
			CO4	Model physical problems mathematically as a system of linear equations and solve them by analytical and numerical methods. Also, determine the nature of Quadratic form using Eigen values	2										
			CO5	Verify the solution of problems through MATLAB.											2
			CO1	Understands structure of crystalline solids, kinds of crystal imperfections and appreciates structure-property relationship in crystals.	1										
			CO2	Understands the role of electronic energy band structures of solids in governing various electrical and optical properties of materials.	1										
3	15PH1001	ENGINEERING MATERIALS	CO3	Understands role of molecular vibrations in determining thermal properties of materials and deformation of materials in response to action of load, for identification of materials having specific engineering applications.	1										
			CO4	Understands spin and orbital motion of electrons in determining magnetic properties of materials and identifies their role in classification soft & hard magnetic materials having specific engineering applications.	1										
			CO5	Apply the knowledge on structure and properties of materials while executing related experiments and develop some inter disciplinary projects.		2									
			CO1	Illustrate how problems are solved using computers and programming.	2				2						
			CO2	Interpret & Illustrate user defined C functions and different operations on list of data.	2				2						
4	15CS1001	C PROGRAMMING AND DATA STRUCTURES	CO3	Implement Linear Data Structures and compare them.		2									
			CO4	Implement Binary Trees.		2									
			CO5	Apply the knowledge obtained by the course to solve real world problems.	2	2			2						_
			CO1	realize and understand the basic aspiration, harmony in the human being.						1				1	
5	15GN1002	HUMAN VALUES	CO2	envisage the roadmap to fulfill the basic aspiration of human beings.						2				2	
			CO3	analyze the profession and his role in this existence.						2				2	

								St	tuder	nt Ou	tcom	es			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Understand the basic principles of engineering design								1			
		INTRODUCTION TO	CO2	Understand and analyze the possible career options in Engineering and develop strategic plan, career targets and mechanism to achieve the same.						3					
6	15GN1004	ENGINEERING	CO3	Understand the aspects of critical thinking and problem solving in engineering								2			
			CO4	Apply to knowledge of critical thinking to frame real-world problems and provide basic solution approach to such problems from engineering perspective								2			
			CO1	Draft Orthographic views, projections of planes and , solidsmanually and by using CAD software Tool (AutoCAD)					2						
7	15ME1002	ENGINEERING GRAPHICS	CO2	Drafting Sectional views , Isometric views ,development of surfaces and perspectives views manually and by using AutoCAD					2						
			CO3	Project based workshop to prepare different models with the aid of workshop trades i.e., Carpentry, Tin smithy, House wiring and Fitting											2
			CO1	Understand the method of identifying the meaning of words and apply them in contexts.							2				
8	15EN1202	INTER PERSONAL COMMUNICATION	CO2	Understand and analyze different cultures and the importance of empathy in cross-cultural communication.						2					
0	1321(1202	SKILLS	СОЗ	Understand and analyze seven techniques of reading and improve reading speed.							2				
			CO4	Understand and apply writing strategies in office/ formal communication							2				
			CO1	Determine extreme values for functions of several variables	2										
			CO2	Determine area, volume through multiples integrals	2										
9	15MT1203	MULTIVARIATE CALCULUS	СОЗ	Apply the concepts of vector calculus to calculate the gradient, directional derivative, arc length, areas of surfaces and volume of solids in practical problems	2										
			CO4	Obtain analytical and numerical solutions of Heat and wave equations	2										
			CO5	Verify the solution of problems through MATLAB											1
			CO1	Examine water quality and select appropriate purification technique for intended problem		2	2								
			CO2	Predict potential complications from combining various chemicals or metals in an engineering setting		2	2								
10	15CY1001	ENGINEERING CHEMISTRY	CO3	Discuss fundamental aspects of electrochemistry and materials science relevant to corrosion phenomena		2	2								
			CO4	Apply phase rule, polymers, conducting polymers and nano chemistry to engineering processes			2								
			CO5	An ability to analyze & generate experimental skills		2	2								
			CO1	Understand the concept of forces and apply the static equilibrium equations.	1				2						
			CO2	Analyze co-planar and non co-planar system of forces.	2				2						
11	15ME1001	MECHANICS	CO3	Apply the concept of centroid & centre of gravity to determine moment of inertia.	2				2						
			CO4	Analyze the rigid bodies under translation and rotation with and without considering forces.	2				2						
			CO5	Understand the engineering systems to prepare and demonstrate the models with the help of mechanics concept to solve the engineering problems.	1				2						

avo	G G 1	G WH	go vo					St	tuder	ıt Ou	tcom	ies			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Understand the basis of Life, Living organisms and human body systems								1		1	
12	15BT1001	BIOLOGY FOR ENGINEERS	CO2	Understand the importance of Diet and Nutrition								1		1	
			CO3	Acquire the knowledge of beneficial and harmful Microorganisms and Biosensors								1		1	
			CO1	Communicate information about various mechanical components visually							2				
		CD A DUUCE A ND	CO2	Sketch shaft coupling and pipe joints							2				
13	15ME2207	GRAPHICS AND VISUALIZATION OF MECHANICAL	CO3	Develop assembly and part drawings							2				
		COMPONENTS	CO4	Analyze and visualization of various mechanical joints and mechanisms.							2				
			CO5	Implement computer aided drafting and simulation											2
			CO1	Understand the importance of Environmental education and conservation of natural resources								1			
14	15GN1001	ECOLOGY AND ENVIRONMENT	CO2	Understand the importance of ecosystems and biodiversity.									1		
			CO3	Understand the knowledge on solid waste management, disaster management and EIA process										1	
			CO1	Understand and apply the fundamentals of a measurement system, characteristics, transducers and metrology using simulation and	2	2									2
			CO2	experimentation tools. Understand various electrical & computer parameters, and apply different measuring techniques on various electrical parameters using simulation and	2	2									2
15	15GN1003	MEASURMENTS	CO3	experimentation tools. Understand electronic & electro-physiological parameters, and apply measuring techniques on electronic parameters using simulation and	2	2									2
			CO4	experimentation tools. Understand and apply different measuring techniques on civil and	_	_									2
			C04	mechanical parameters using simulation and experimentation tools.	2	2									2
			CO1	Understand the fundamentals of thermodynamic systems and processes	2										
			CO2	Apply laws of the thermodynamics and principle of entropy to engineering devices.	2										
16	15ME1003	THERMODYNAMICS	CO3	Analyze various air standard cycles and their performance.	2										
			CO4	Evaluate the performance of fuels and combustion to various engines.											1
			CO5	Apply the theoretical concepts to conduct various experiments of thermodynamics practically and analyze the data.		2									
			CO1	Understand various properties of fluids and apply various laws for measuring pressure					2						
			CO2	Apply the laws to measure total pressure and center of pressure on surfaces and understand the concepts of Buoyancy and flotation					2						
17	15ME2104	FLUID MECHANICS	CO3	Apply continuity equation, stream function and velocity potential function for fluid flows and apply Bernoulli's equation to various fluid flow applications					2						
			CO4	Estimate the major and minor losses in flow through pipes and understand the concepts of dimensional analysis and boundary layers.					2						
			CO5	Apply the theoretical concepts to conduct various experiments of fluid flow practically and analyze the data.		2									

								St	tudei	ıt Ou	tcom	ies			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Analyze stresses in members with 1D axial loading or torsion		2									
			CO2	Analyze shear force and bending moment diagrams		2									
18	15ME2106	STRENGTH OF MATERIALS	CO3	Analyze deflections and stresses in beams					2						
			CO4	Design columns and pressure vessels					2						
			CO5	Apply the theoretical concepts to conduct various experiments of strength of materials practically and analyze the data		2									
			CO1	Apply the various strategies of presentation Skills.							2				
19	15 EN 2103	PROFESSIONAL COMMUNICATION	CO2	Analyze the given topics and situations and applying the strategies of group discussion.							2				
19	15 EN 2105	SKILLS	CO3	Analyze the basic concepts of critical and analytical reading skills.							2				
			CO4	Apply the strategies of sentence formation and sentence completion.							2				
			CO1	Demonstrate Probability, theorems of probability and their applications in discrete probability distributions to the real world problems.	2										
			CO2	Apply Continuous distributions to analyze various real-world situations and also Construct the linear and non-linear regression lines.	2										
20	15MT2104	PROBABILITY AND OPTIMIZATION TECHNIQUES	CO3	Determine the relationship between two variables for grouped and ungrouped data using correlation coefficient and also Formulate the given industrial problems as a linear programming problem and solve it by graphical method	2										
			CO4	Obtain the solutions of linear and non-linear programming problems using different methods	2										
			CO5	Verify the solution of the problems through MATLAB/Excel											1
			CO1	Understand the representation, manipulation and operations of continous Time signals and Systems				2	2						
			CO2	Explore the continous Time signals in Fourier domain and illustration of sampling theorem				2	2						
21	15ES2002	SIGNAL ANALYSIS	CO3	Understand the Laplace transforms and its applications in LTI Systems				2	2						
			CO4	Analyze Discrete time signals in Fourier and Z Transform domain				2	2						
			CO5	Apply and evaluate signals and systems concept to various applications under time domain and transform domain											3
			CO1	Identify and differentiate various types of materials. i.e. Metals, Alloys and understand various material testing methods.	2										
22	151/152105	MATERIALS SCIENCE	CO2	Analyze the concept of cooling curves, equilibrium phase diagrams, and heat treatment techniques.	2										
22	15ME2105	AND METALLURGY	CO3	Identify the importance of composites, ceramics and strengthening mechanisms.		2									
			CO4	Identify various nano material, bio-material, smart material and powder metallurgy process and their applications.		2									
			CO1	Understand the principles, applications, and limitations of Sand Casting.		2									
			CO2	Understand the principles, applications, and limitations of Special Casting , Forming, and Forging processes.			2								
23	15ME2208	MANUFACTURING SCIENCE AND	CO3	Understand the principles, applications, and limitations of joining processes and machining w.r.t turning, drilling			2								
		TECHNOLOGY	CO4	Understand the principle, applications, and limitations of machining w.r.t milling and grinding. Understand the principles of the design and use of jigs and fixtures.			2								
			CO5	Gain hands on experience in converting a given raw material into desired shape and size by applying suitable primary and /or secondary manufacturing processes		2									

								St	tudei	ıt Ou	tcom	es			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Identify, select and analyze kinematically suitable mechanisms for required motion of machinery											2
			CO2	Develop velocity and acceleration diagrams and analyze the data		2									
24	15ME2209	KINEMATICS AND DYNAMICS OF MACHINES	CO3	Develop cam profiles and Analyze gears and gear trains kinematically											2
		WHICH VE	CO4	Analyze mechanisms dynamically					2						
			CO5	Apply the theoretical concepts to design mechanisms by using the simulation software and analyzing the data		2									
			CO1	Understand the properties of Pure substances and analyze the Rankine cycle efficiency	2		2								
			CO2	Apply the principles of nozzle and understand the working of Condensers	2		2								
25	15ME2210	APPLIED THERMODYNAMICS	CO3	Understand fundamentals of I.C engines and combustion	2		2								
			CO4	Apply the principles of Refrigeration and Psychrometry to refrigeration and air conditioning units	2		2								
			CO5	Able to do design a power plant, air conditioning unit and a refrigeration plant			2								
			CO1	Understand basics of DC circuit analysis, fundamentals of AC and introduction three phase circuits	1										
			CO2	Understand construction & working principle of DC Machines	1										
26	15 EE 2202	BASIC ELECTRICAL & ELECTRONICS ENGINEERING	CO3	Understand construction & working principle of Transformer, three phase and single phase induction motor.	1										
			CO4	Understand number systems and their conversions, characteristics of PN junction diode	1										
			CO5	Conduct an experiment to analyze the performance of various electrical and electronic devices and draw their char characteristics.	2										
			CO1	Analyse and evaluate 1D problems and plane trusses using FEM					2						
			CO2	Analyse and evaluate 2D problems using FEM					2						
27	15ME3111	FINITE ELEMENT METHOD	CO3	Analyse and evaluate axisymmetric solids subjected to axisymmetric loading using FEM											3
			CO4	Analyze and evaluate solids subjected to dynamic loads											3
			CO5	Apply the theoretical concepts to conduct various interpretation by using Analysis software's		2									
			CO1	Design of machine elements for simple and combined static stresses, fatigue strength			2								
			CO2	Design shaft and couplings under static and dynamic loads, Flywheel			2								
28	15ME3112	DESIGN OF MACHINE ELEMENTS	CO3	Design of Power screws, bolted and welded joints and springs.					3						
			CO4	Design of bolted and welded joints and springs					3						
			CO5	Apply the theoretical concepts to conduct various experiments on design of machine elements practically and analyze the data.		2									

GNO	G G 1	C TW	GO NO	D 14 M C 04				St	tuder	nt Ou	tcom	ies			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Implement various modern and advanced manufacturing techniques and processes		2									ļ.
			CO2	Analyze the parameters related to economics of machining		2									
29	15ME3113	ADVANCED MANUFACTURING TECHNOLOGY	CO3	Understand NC, DNC and CNC systems											3
		120111102001	CO4	Identify various techniques for processing of MEMS											3
			CO5	Apply the theoretical concepts to conduct various experiments on Unconventional machines		2									
			CO1	Design of rotor systems		2									
			CO2	Design of compressor and fan blades		2			2						
30	15ME3114	TURBO MACHINES	CO3	Design of pumps		2			2						
			CO4	Design of turbines		2			2						
			CO5	Apply the theoretical concepts to conduct various experiments practically and analyze the data.		2									
			CO1	Acquire ability to analyze, evaluate and simulate time response of a Mechatronic system		2									
			CO2	Understand Quantizing theory and Data acquisition systems			2								
31	15ME3115	FEEDBACK AND CONTROL SYSTEMS	CO3	Understand the role of PLCs and microcontrollers in the design of control systems for mechatronic systems to achieve desired performance characteristics			2								
			CO4	Acquire ability to analyze, evaluate and improve system performance using the control strategies viz. P, PD, PI, PID etc.			2								
			CO5	Modelling of mechanical, hydraulic/ pneumatic and thermal systems using NI LabVIEW Software		2									
			CO1	Design and select suitable bearings for applications			2		3						
			CO2	Design brakes and clutches for given conditions			2		3						
32	15 ME 3216	DESIGN OF TRANSMISSION ELEMENTS	CO3	Design gears and belt and chain drives for power transmission			2		3						
			CO4	Design of IC engine components - piston, connecting rod and crankshaft.			2		3						
			CO5	Apply the theoretical concepts to conduct various Simulations by using the simulation tool and analyze the data		2									
			CO1	Apply techniques to improve productivity and quality in production system			2								3
			CO2	Apply the principles of layout design, line balancing, Forecasting		2	2								
33	15 ME 3217	PRODUCTION AND OPERATIONS MANAGEMENT	CO3	Apply the principles of Aggregates planning, Inventory management in operations management											3
			CO4	Inspection & Quality control			2								
			CO5	Apply the theoretical concepts to conduct various experiments practically and analyze the data.		2									

G NO	G G 1	C WY	GO NO	D. C. M. C. O.				St	tuder	nt Ou	tcom	es			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Understanding basic principles of conduction, radiation, and convection heat transfer.					2						
			CO2	Extend the basic principle of conservation of energy to systems which involve conduction, radiation, and heat transfer.					2						
34	15 ME 3218	HEAT TRANSFER	CO3	To identify, formulate and solve engineering problems involving conduction convection and radiation heat transfer. To identify, formulate and solve engineering problems involving											2
			CO4	conduction convection and radiation heat transfer into a mathematical model, selecting an appropriate solution technique and evaluating the significance of results.											2
			CO5	Apply the theoretical concepts to conduct various experiments of heat transfer practically and analyze the data. b 2		2									
			CO1	Understand cooling and lubrication systems	2										
35	15 ME 3251	AUTOMOBILE	CO2	Understand chassis and emission of automobiles	2										
33	13 WIL 3231	ENGINEERING	CO3	Know the transmission and suspension systems			2								
			CO4	Analyze the performance of transmission and suspension systems					3						
			CO1	Understand and design of engine from first principle	2										
36	15 ME 4155	AUTOMOBILE	CO2	Design and Analyze cooling, lubrication and engine component systems			3								
30	13 ME 4133	ENGINE DESIGN	CO3	Design engine components			2								
			CO4	Understand engine testing equipments			2								
			CO1	Understand functionality of clutches and gear box			2								
37	15 ME 4156	AUTOMOTIVE	CO2	Principle of working of drive line systems			2								
37	13 ME 4130	TRANSMISSION	CO3	Understand transmission of fluid flywheel and torque convertor			2								
			CO4	Principle of working of automatic transmission systems			2								
			CO1	Understand working principles of different batteries and ignition system			2								
38	15 ME 4157	AUTOTRONICS &	CO2	Understand working principles of ignition system			2								
36	13 ME 4137	SAFETY	CO3	Understand auto wiring electrical systems			2								
			CO4	Understand safety concept and safety equipments			2								
			CO1	Application of solar photo voltaic cells	2										
20	15 ME 4150	ALTERNATIVE	CO2	Understand Hydrogen energy			2								
39	15 ME4158	ENERGY SOURCES FOR AUTOMOBILES	CO3	Know the design considerations of electric automobiles			2								
			CO4	Understand principles of working of electric automobiles			2								

								St	tudeı	ıt Ou	tcom	ies			
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Understanding Industrial automation and control			2								
40	15 ME 3252	INDUSTRIAL AUTOMATION &	CO2	Understand working principles of different sensors			2								1
40	13 WIE 3232	CONTROLS	CO3	Understand working principles of prime movers			2								1
			CO4	Know the working of PLCs			2								
			CO1	Analysis of manipulator kinematics		3									
	15 15 1150	ROBOTIC MODELING	CO2	Understanding manipulator statics			2								
41	15 ME 4159	ANALYSIS AND CONTROL	CO3	Understanding manipulator dynamics			2								
			CO4	Understand programming languages			2								
			CO1	Analysis and Synthesis of systems		3									
40	15 ME 4160	MODELING AND ANALYSIS OF	CO2	Understanding system response-Time domain			2								
42	15 ME 4160	DYNAMIC PHYSICAL SYSTEMS	CO3	Understanding system response-Frequency domain			2								
			CO4	Carried out computer analysis and simulation		2									
			CO1	Understand time response design and Digital control			2								
42	15 ME 4161	THEORY AND	CO2	Study different plots like Bode plot, polar plot, Nyquist plot etc.			2								
43	15 ME 4161	DESIGN OF CONTROL SYSTEMS	CO3	Understand Modern control systems			2								
			CO4	Understand Linear control systems			2								
			CO1	Understand applications of smart materials			2								
44	15 ME 4162	SMART MATERIALS FOR MECHATRONIC	CO2	Design of smart actuation and control systems		2									
44	15 ME 4102	APPLICATIONS	CO3	Application of piezoelectric actuators			2								
			CO4	Know the future applications of smart materials			2								
			CO1	Understand Crack growth and fracture mechanics			2								
45	15 ME 3253	FRACTURE	CO2	Development of stress field equations in fracture mechanics	2										
43	13 ME 3233	MECHANICS	CO3	Know the various methods for evaluating stress intensity factors			2								
			CO4	Understand how to perform fracture toughness testing		2									
			CO1	Understand and analyze free and forced vibrations		2									
16	15 ME 4162	MECHANICAL	CO2	Understand Torsional vibrations		2									
46	15 ME 4163	VIBRATIONS	CO3	Understand principle modes of vibrations	2										
			CO4	Understand Mutli-Degree of freedom systems			2								
		1										·			

S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Understand design models and product life cycle			2								
4.7	153.00.4164	DD OD LIGHT DEGLEN	CO2	Understand concept to Design for Manufacturing			2								
47	15 ME 4164	PRODUCT DESIGN	CO3	Understand concept to Design for Assembly			2								
			CO4	Understand concept to Design for environment and design for sustainability			2								
			CO1	Understand Group Technology Techniques			2								
		FLEXIBLE	CO2	Understand CAPP techniques			2								
48	15 ME 4165	MANUFACTURING SYSTEMS	CO3	Understand FMS			2								
			CO4	Understand AGV and ASRS systems			2								
			CO1	Analyze the need of reverse engineering	2										
49	15 ME 4166	REVERSE ENGINEERING AND	CO2	Understand working principles of RP techniques			2								
49	13 ME 4100	RAPID PROTOTYPING	CO3	Understand Rapid tooling and RP case studies			2								
			CO4	Understand applications of RP techniques			2								
			CO1	Understand types of maintenance			2								
50	15 ME 4167	CONDITION MONITORING AND	CO2	Understand Equipment downtime and breakdown analysis			2								
30	13 ME 4107	FAULT DIAGNOSIS	CO3	Perform Equipment health monitoring			2								
			CO4	Perform and analyze vibration characteristics			2								
			CO1	Understand three-dimensional stress strain relations			2								
51	15 ME 4168	EXPERIMENTAL	CO2	Understand Brittle coatings			2								
31	13 ME 4100	STRESS ANALYSIS	CO3	Understand moiré methods			2								
			CO4	Understand photo elasticity			2								
			CO1	Kinematic analysis of mechanisms			2								
52	15 ME 4169	ADVANCED MECHANISMS	CO2	Perform path curvature theory			2								
32	13 IVIE +109	DESIGN	CO3	Synthesis of mechanisms			2								
			CO4	Understand spatial mechanism and robotics			2								

9.55			go		a b c d e f g h i j										
S NO	Course Code	Course Title	CO NO	Description of the Course Outcome	a	b	c	d	e	f	g	h	i	j	k
			CO1	Understand numerical methods	2										
53	15 ME 4170	COMPUTATIONAL	CO2	Apply time integration methods			2								
33	13 ME 4170	FLUID DYNAMICS	CO3	Understand numerical grid generation and mapping			2								
			CO4	Apply Navier Stokes Equations			2								
			CO1	Understand working principle of air refrigeration system			2								
54	15 ME 4171	REFRIGERATION &	CO2	Understand vapour compression and absorption systems			2								
34	13 ME 41/1	AIR-CONDITIONING	CO3	Understand working of steam jet refrigeration system			2								
			CO4	Perform Air-conditioning load calulations		2									
			CO1	Analyze existing robotic systems with respect to their anatomy, type, performance specifications, end effectors etc.		2									
55	15 ME 30B4	ROBOTICS	CO2	Suggest a robotic system design with respect to the suitable sensors, actuators for an intended application and simulate its performance			2								
33	13 WE 30B4	ROBOTICS	CO3	Analyze robot manipulator performance with respect to digital control architecture comprising of PLC's / Microcontroller for an application		2									
			CO4	Understand different programming languages			2								
			CO1	Identify appropriate sensors, actuator, microcontrollers etc. for a given application			2								
56	15 ME 30B5	MECHATRONICS	CO2	Model system performance and estimate the expected system behaviour		2									
30	13 ME 30B3	MECHATRONICS	CO3	Suggest a mechatronic product design for the intended application and evaluate its performance											
			CO4	Understand digital logic and PLC			2								
			CO1	Model and solve for the optimum solutions using LPP	2										
57	15 ME 30B6	OPERATIONS	CO2	Model and optimize transportation and assignment problems		2									
31	13 MIC 3000	RESEARCH	CO3	Model and optimize Game theory, DPP, Queuing theory & Simulation problems					2						
			CO4	Understand concepts of PERT/CPM			2								
			Total	92	104	187	8	79	12	28	9	1	9	46	