

Koneru Lakshmaiah Education Foundation (Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' Grade University & Approved by AICTE & ISO 9001-2015 Certified Campus: Green Fields, Vaddeswaram - 522 502, Guntur District, Andhra Pradesh, INDIA. Phone No. 0863 - 2399999; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 -2577715, Fax: +91-866-2577717.

Department of Physics

A.Y.2023-24

Course Code	Course	S. No	C O .	Description of the course Outcome
	Title		No	
23UC5201	Profess	1	CO1	Develop and demonstrate principles of listening,
	ional Comm unicati on Skills	2	CO2	Demonstrate different types of personal and professional.
		3	CO3	Apply the concepts of Mathematical Principles to solve.
		4	CO4	Apply the concepts and using Logical thinking to solve.
		5	CO1	Mechanics to solve the problems related to the
		6	CO2	Understand the fundamental concepts of wave optics, electromagnetic waves, interference and polarization of light.
	Physics	7	CO3	Apply the spin and orbital motion of electrons in determining magnetic properties of materials and identifies their role in classification soft & hard magnetic materials having specific engineering applications.
23NS5102	of Nanote chnolo gy	8	CO4	Apply the knowledge of crystal structures and understand the electrical properties of semiconductors.
		9	CO1	Understanding the basic Classification and Nomenclature of Nanomaterials.
		10	CO2	Demonstrate of different types of chemical method to Synthesis of Nanomaterials.
	Chemis	11	CO3	Understanding the concepts of Structure and Morphology of Nanoparticles.
23NS5103	try of Nanote chnolo gy	12	CO4	Demonstrate the Novel Properties of Nanomaterials.
	Synthes	13	CO1	Apply the principles of different Physical and chemical

	is and			routes to synthesis as per the required application and
23NS5104	charact			properties.
	erizatio	14	CO2	Apply the knowledge of structural characterization
	ns of			methods to analyse the performance of materials for
	Nano			required applications.
	Materia	15	CO3	Apply the knowledge of spectroscopic characterization
	ls-1			methods to analyze the performance of materials for
				required applications.
		16	CO4	Apply the knowledge of surface and thermal
				characterization methods to analyze the performance
				of materials for required applications.
		17	C05	Apply the knowledge of synthesis and characterization
		17		of nanomaterials to perform experiments and enalyze
				the samples.
		18	CO1	Understand the basics of Biotechnology.
	Electiv	19	CO2	Understand the interaction between biomolecules and
	e l			nanoparticle surface and its applications.
	Dialog	20	CO3	Optimize the synthesis of Biocompatibility of
23NS51E1	Biolog			Nanomaterials.
	y 01 Nanote	21	CO4	Identify the risk assessments involved bio
	chnolo			nanomaterial.
	σv			
	57			
		22	CO1	To acquire basic knowledge on nucleic acids, amino
				acids.
		23	CO2	To acquire knowledge on carbohydrates, lipids and
				proteins.
		24	CO3	Analyze different types of DNA based Nanostructures.
	Bio	25	CO4	To know about their metabolisms, energy production,
23NS51E2	Chemis			carbohydrates, lipids and proteins.
	try			
		26	CO1	Illustrate Research objects, steps involved in research
		27	COO	and articulate appropriate Research Questions.
		27	02	Perform Literature Review in a Scholarly style and
	Essenti	20	CO2	apply appropriate methods for Data conection.
	als of	20		represent the tata in taoutai/Oraphical form and
	Researc	29	CO4	Perform statistical modelling and analysis to ontimize
23IE5201	h			the data prepare the data for publishing
	Design			the data, prepare the data for publishing.
	8	30	CO1	Understand to synthesis of NPs using Sputtering
				processes.

31 CO2 Demonstrate the	defects of materials using different
characterization t	techniques.
Synthes 32 CO3 Demonstrate	the Magnetic and electrical
Characterization (
23NS5205 erizatio	nedical NPs and biomedical materials
$\frac{251105205}{n}$ of $\frac{34}{24}$ CO5 Expristing the	different types of NPs and analyzing
Nanom them.	different types of firs and analyzing
aterials	
-2	
35 CO1 Understanding th	he principles of Nanotechnology and
explaining its app	plications in the biomedical field with
the intersection o	f nanotechnology and biomedicine.
36 CO2 Describe the Na	notechnology in Agriculture through
precision and c	conventional farming methods and
current develop	oments in Nano-based agriculture
systems.	
37 CO3 Evaluate the in	npact of Nanotechnology on food
processing, food	quality, and ethical implications on
Emergi food products.	
ng 38 CO4 Apply Nanosca	le techniques to demonstrate the
applicat nanomaterial-bio	molecular interactions and toxicity
associated with	using nanomaterials in biological
23NS3200 haloce systems.	
v	
39 CO1 Understand the	Basic Electronic devices and nano
electronic devic	ces. Mechanical Molecular Nano
robotics Nano	devices and Nano computers:
Theoretical Mode	els.
40 CO2 Understand the M	Molecular scale electronics -Molecular
materials for elect	ctronics – Carbon materials: Fullerene
and CNTs.	
41 CO3 Understand the M	Micro and Nano electrical Systems: -
Micro Overview.	
and 42 CO4 Understand the F	Future Nanosystems -Nano machines,
Nano nano robots, ele	ectronics based on CNT, molecular
23NS5207 Electro Electronics.	
Device	
43 CO1 Apply in depth	knowledge in the concents of
Electiv	th micro and nanoscale
e-2 44 CO2 Apply good kno	owledge in nanomagnetism and the

				advanced tools to study.
	Nanom	45	CO3	Applying the various imaging techniques to study the
	agnetic			magnetic behaviors.
	Materia	46	CO4	Identiy and apply the suitable applications of the
23NS52E3	ls and			magnetic materials based on the functional Properties
	Device			in nanomagnetic in data storageand biomedicine.
	s			
23NS52E4	Societa	47	CO1	Understand the societal impacts of nanotechnology
	1	48	CO2	Apply the economic impact of nanotechnology
	impacts	49	CO3	Discuss the ethics and laws related to nanotechnology
	of	50	CO4	Discuss the societal impacts of nanotechnology
	nanotec			
	nnolog			
	y	51	CO1	Understands structure of crystalline solids kinds of
			001	crystal imperfections and appreciates structure-
				property relationship in crystals
		52	CO^2	Understands spin and orbital motion of electrons in
		52		determining magnetic properties of materials and
				identifies their role in classification soft & hard
				magnetic metaricle hoving angelific angingering
				magnetic materials naving specific engineering
	Open	52	<u> </u>	applications.
	Electiv	33	COS	Understands role of molecular level vibrations in
	e – 1			determining thermal properties of materials, near
				treatment methods for changing the microstructure of
	Materia			materials and micro and macro level responses of
	1			materials subjected to load, for identification of
	Science		~~ (materials having specific engineering applications.
	and	54	CO4	Understands the role of electronic energy band
OFNIG0001	Engine			structures of solids in governing various electrical and
OENS0001	ering			optical properties of materials.
	Value			
23CC5201	Added			
25005201	Course			
	Course			
		55		Acquire the knowledge in optical Sensors
		55		Mathematical Methods in Nanophotonics
		56	CO^2	Evaluate fundamental concents of physics which is
		50		recessary for Plasmonic biosensors panofabrication
		57	<u>CO3</u>	Understand the basic principles of Nano logare Sensors
		51		and Nanonhotonics and its importance
	Nano	50	<u> </u>	Independent the basic principles of eveness transformed
23NIS6108	Dhotoni	50		Understand the basic principles of energy transfer and
251150100				medical sensor
	cs			

		59	CO1	Gain in-depth knowledge in the concepts of magnetism at nanoscale.
		60	CO2	Gain good knowledge in Thermoelectric Materials and
				the advanced tools to study.
		61	CO3	Understanding the various one dimensional
	Advanc			semiconductors behaviours.
23NS6109	ed	62	CO4	Understanding the structure properties of polymeric
	nanoma			nanomaterials and applications.
	terials			
		63	CO1	Apply the basic concepts of energy conversion
				systems.
		64	CO2	Appraise the working of fuel cells current status and
				future trends
	Advanc	65	CO3	Apply the knowledge of photovoltaic cells and energy
	ed			conversion systems to improve their performance.
23NS6110	Nanobi	66	CO4	Apply the knowledge of photovoltaic systems to
	otechno			understand the working of Solar cells.
	logy			
23IE6104	Term	67	CO1	Discovery of new insights, theories, or empirical
	Paper			findings that advance the existing knowledge base

	Flectiv	68	COL	Apply the basic concepts of energy conversion
	e-3			systems.
		69	CO2	Appraise the working of fuel cells current status and
	Nanote			future trends
	chnolo	70	CO3	Apply the knowledge of photovoltaic cells and energy
23NS61E5	gy for			conversion systems to improve their performance.
	Renew	71	CO4	Apply the knowledge of photovoltaic systems to
	Energy			understand the working of Solar cells.
	Materia			
	ls			
		72	CO1	Understand the recent advancements in nano medicine.
		73	CO2	learn developments in nanostructured materials used
	Nanote			for medical implants
	chnolo	74	CO3	learn about nano diagnostics and understand the
	gy in			harmful effects of nanoparticles.
23NS61E6	Health	75	CO4	Understand need of nanotechnology in health care
	Care			
		76	CO1	- Understanding the basic concepts, Background,
				scientific revolutions of nanoscience and technology
	0			and understanding multifunction materials
	Flectiv	77	CO2	Apply the principles of different chemical routes to
				synthesis as per the required application and

	e – 2			properties.
		78	CO3	- Understanding the basic difference between nano and
	Experi			bulk materials properties.
	mental	79	CO4	Apply the knowledge of structural characterization
OENS0002	Physics			methods to analyse the performance of materials for
		0.0	GOL	required applications.
		80		Understanding of the principles, limitations, and
		01	<u> </u>	applications of nano electronics.
		01		nanoscale transistor fabrication industrial CMOS
				technology and non-classical elements of nano
				MOSFETs.
		82	CO3	Understanding of the introduction to nanostructures,
				the fabrication and patterning techniques used to create
				nanostructures, and the characterization techniques.
		83	CO4	Understanding of nano sensors, nano actuators,
	Flexi			memory devices, photovoltaic cells, and their
	Core			applications in communication, industry, commercial
23NS6121	Course			settings, agriculture, biomedical fields, and the internet
251150121	electro			of Things (101).
	nics			
		84	CO1	Gain the in-depth knowledge in the concepts Artificial
	Artifici			Intelligence, Machine Learning, and Deep Learning
	al	85	CO2	Gain and apply good knowledge of artificial
	Intellig			intelligence in the nanotechnology.
	ence	86	CO3	Applying the artificial intelligence in nanoscale
	Integrat			simulations
22219(122	10n	87	CO4	Apply the knowledge of artificial intelligence in Nano-
23180122	With Nanoto			Computing and High-Performance Computing.
	chnolo			
	ov			
	57	88	CO5	Discovery of new insights, theories, or empirical
	Dissert			findings that advance the existing knowledge base
23IE6205	ation			