Perfect crystals do not exist: Defects exist in crystals which result in departure from periodicity. Some defects are the result of crystal growth and handling (dislocations, grain boundaries), others are intrinsic properties of the crystalline state at non-zero (Kelvin) temperature (vacancies or interstitials).

Various defects affect various types of physical or chemical Properties of crystalline solids. It is thus extremely important to understand the origin and nature of defects in crystals.

A useful classification of defects is on the basis of their

Dimensionality:
0D: point defects
1D: line defects
2D: planar defects
3D: volume defects

Point Defects:
- Vacancies: Diffusion, Color Center
- Interstitials: Mechanical Properties, Diffusion
- Impurity Atoms: Electrical Properties

Line Defects:
- Dislocations: Mechanical Properties

Planar Defects:
- Grain Boundaries: Fabrication, Corrosion
- Stacking Faults: Mechanical Properties

Volume Defects:
- Voids: Porosity, Precipitation
- Second Phase: Mechanical and Magnetic Properties

1. What is a defect in Crystal?
2. Why Defects are forming in Crystals.
3. Give the different defects in Crystals.
4. Explain the classification of defects in Crystals.
5. Get knowledge on Engineering applications of crystallography
6. Define and classify crystal imperfections
Point Defects: Point defects are where an atom is missing or is in an irregular place in the lattice structure. Point defects include self interstitial atoms, interstitial impurity atoms, substitutional atoms and vacancies. A self interstitial atom is an extra atom that has crowded its way into an interstitial void in the crystal structure. Self interstitial atoms occur only in low concentrations in metals because they distort and highly stress the tightly packed lattice structure.

A substitutional impurity atom is an atom of a different type than the bulk atoms, which has replaced one of the bulk atoms in the lattice. Substitutional impurity atoms are usually close in size (within approximately 15%) to the bulk atom. An example of substitutional impurity atoms is the zinc atoms in brass. In brass, zinc atoms with a radius of 0.133 nm have replaced some of the copper atoms, which have a radius of 0.128 nm.

Interstitial impurity atoms are much smaller than the atoms in the bulk matrix. Interstitial impurity atoms fit into the open space between the bulk atoms of the lattice structure. An example of interstitial impurity atoms is the carbon atoms that are added to iron to make steel. Carbon atoms, with a radius of 0.071 nm, fit nicely in the open spaces between the larger (0.124 nm) iron atoms.

Vacancies are empty spaces where an atom should be, but is missing. They are common, especially at high temperatures when atoms are frequently and randomly change their
positions leaving behind empty lattice sites. In most cases diffusion (mass transport by atomic motion) can only occur because of vacancies.

1. What are the Point defects?
2. How Point defects are classify
3. What is dislocation?
4. Distinguish between Schottky and Frenkel defects
5. What is a defect in Crystal?
6. Why Defects are forming in Crystals.
7. Give the different defects in Crystals.
8. Explain the classification of defects in Crystals.
9. Get knowledge on Engineering applications of crystallography
10. Define and classify crystal imperfections
11. What are the Point defects?
12. How Point defects are classify
13. What is dislocation?
14. Distinguish between Schottky and Frenkel defects

Edge Dislocations:

The edge defect can be easily visualized as an extra half-plane of atoms in a lattice. The dislocation is called a line defect because the locus of defective points produced in the lattice by the dislocation lie along a line. This line runs along the top of the extra half-plane. The inter-atomic bonds are significantly distorted only in the immediate vicinity of the dislocation line.

![Fig: Edge dislocations](image)
Understanding the movement of a dislocation is key to understanding why dislocations allow deformation to occur at much lower stress than in a perfect crystal. Dislocation motion is analogous to movement of a caterpillar. The caterpillar would have to exert a large force to move its entire body at once. Instead it moves the rear portion of its body forward a small amount and creates a hump. The hump then moves forward and eventual moves all of the body forward by a small amount.

As shown in the set of images above, the dislocation moves similarly moves a small amount at a time. The dislocation in the top half of the crystal is slipping one plane at a time as it moves to the right from its position in image (a) to its position in image (b) and finally image (c). In the process of slipping one plane at a time the dislocation propagates across the crystal. The movement of the dislocation across the plane eventually causes the top half of the crystal to move with respect to the bottom half. However, only a small fraction of the bonds are broken at any given time. Movement in this manner requires a much smaller force than breaking all the bonds across the middle plane simultaneously.

Screw Dislocations

There is a second basic type of dislocation, called screw dislocation. The screw dislocation is slightly more difficult to visualize. The motion of a screw dislocation is also a result of shear stress, but the defect line movement is perpendicular to direction of the stress and the atom displacement, rather than parallel. To visualize a screw dislocation, imagine a block of...
metal with a shear stress applied across one end so that the metal begins to rip. This is shown in the upper right image. The lower right image shows the plane of atoms just above the rip. The atoms represented by the blue circles have not yet moved from their original position. The atoms represented by the red circles have moved to their new position in the lattice and have re-established metallic bonds. The atoms represented by the green circles are in the process of moving. It can be seen that only a portion of the bonds are broke at any given time. As was the case with the edge dislocation, movement in this manner requires a much smaller force than breaking all the bonds across the middle plane simultaneously.

Fig: The screw dislocations

If the shear force is increased, the atoms will continue to slip to the right. A row of the green atoms will find their way back into a proper spot in the lattice (and become red) and a row of the blue atoms will slip out of position (and become green). In this way, the screw dislocation will move upward in the image, which is perpendicular to direction of the stress. Recall that the edge dislocation moves parallel to the direction of stress. As shown in the image below, the net plastic deformation of both edge and screw dislocations are the same, however.

Fig: to show edge and screw dislocations

The dislocations move along the densest planes of atoms in a material, because the stress needed to move the dislocation increases with the spacing between the planes. FCC and BCC metals have many dense planes, so dislocations move relatively easy and these materials have high ductility. Metals are strengthened by making it more difficult for dislocations to move.
This may involve the introduction of obstacles, such as interstitial atoms or grain boundaries, to “pin” the dislocations. Also, as a material plastically deforms, more dislocations are produced and they will get into each others way and impede movement. This is why strain or work hardening occurs.

In ionically bonded materials, the ion must move past an area with a repulsive charge in order to get to the next location of the same charge. Therefore, slip is difficult and the materials are brittle. Likewise, the low density packing of covalent materials makes them generally more brittle than

Surface Defects: These are two dimensional imperfections that lies in the metal with polycrystalline structures or they are also called as interfacial defects can be defined as boundaries that have two dimensional imperfections in crystalline solids, and have different crystal structures and/or crystallographic orientations on either side of them. They refer to the regions of distortions that lie about a surface having thickness of a few atomic diameters. For example: external surfaces, grain boundaries, twin boundaries, stacking faults, and phase boundaries. These imperfections are not thermodynamically stable, rather they are metastable imperfections. They arise from the clustering of line defects into a plane.

External surface: The environment of an atom at a surface differs from that of an atom in the bulk; especially the number of neighbors (coordination) at surface is less. Thus the unsaturated bonds of surface atoms give rise to a surface energy. This result in relaxation (the lattice spacing is decreased) or reconstruction (the crystal structure changes). To reduce the energy, materials tend to minimize, if possible, the total surface area.

Grain boundaries: Crystalline solids are, usually, made of number of grains separated by grain boundaries. Grain boundaries are several atoms distances wide, and there is mismatch of orientation of grains on either side of the boundary as shown in [figure-3.6](#). When this misalignment is slight, on the order of few degrees (< 10°), it is called *low angle grain boundary*. These boundaries can be described in terms of aligned dislocation arrays. If the low grain boundary is formed by edge dislocations, it is called *tilt boundary*, and *twist boundary* if formed of screw dislocations. Both tilt and twist boundaries are planar surface imperfections in contrast to high angle grain boundaries. For *high angle grain boundaries*, degree of disorientation is of large range (> 15°). Grain boundaries are chemically more reactive because of grain boundary energy. In spite of disordered orientation of atoms at grain
boundaries, polycrystalline solids are still very strong as cohesive forces present within and across the boundary.

Figure: Schematic presentation of grain boundaries.

Twin boundaries: It is a special type of grain boundary across which there is specific mirror lattice symmetry. Twin boundaries occur in pairs such that the orientation change introduced by one boundary is restored by the other (*figure-*). The region between the pair of boundaries is called the twinned region. Twins which forms during the process of recrystallization are called *annealing twins*, whereas *deformation twins* form during plastic deformation. Twinning occurs on a definite crystallographic plane and in a specific direction, both of which depend on the crystal structure. Annealing twins are typically found in metals that have FCC crystal structure (and low stacking fault energy), while mechanical/deformation twins are observed in BCC and HCP metals. Annealing twins are usually broader and with straighter sides than mechanical twins. Twins do not extend beyond a grain boundary.

Figure A pair of twin boundaries.
Stacking faults: They are faults in stacking sequence of atom planes. Stacking sequence in an FCC crystal is ABC ABC ABC …, and the sequence for HCP crystals is AB AB AB….

When there is disturbance in the stacking sequence, formation of stacking faults takes place. Two kinds of stacking faults in FCC crystals are: (a) ABC AC ABC…where CA CA represent thin HCP region which is nothing but stacking fault in FCC, (b) ABC ACB CABC is called extrinsic or twin stacking fault. Three layers ACB constitute the twin. Thus stacking faults in FCC crystal can also be considered as submicroscopic twins. This is why no microscopic twins appear in FCC crystals as formation of stacking faults is energetically favorable. Stacking fault energy varies in range 0.01-0.1 J/m^2. Lower the stacking fault energy, wider the stacking fault, metal strain hardens rapidly and twin easily. Otherwise, metals of high stacking fault energy i.e. narrower stacking faults show a deformation structure of banded, linear arrays of dislocations.

Phase boundaries exist in multiphase materials across which there is sudden change in physical/chemical characteristics.

The top and bottom faces of the unit cell consist of six atoms that form regular hexagons and surround a single atom in the center. Another plane that provides three additional atoms to the unit cell is situated between the top and bottom planes. The atoms in this mid-plane have as nearest neighbors atoms in both of the adjacent two planes. The equivalent of six atoms is contained in each unit cell; one-sixth of each of the 12 top and bottom face corner atoms, one-half of each of the 2 center face atoms, and all 3 mid-plane interior atoms. If a and c represent, respectively, the short (basal) and long (height) parameters of unit cell dimensions of Fig a, the c/a ratio should be 1.633. The coordination number and the atomic packing factor for the HCP crystal structure are the same as for FCC: 12 and 0.74, respectively.
Volume defects: as name suggests are defects in 3-dimensions. These include pores, cracks, foreign inclusions and other phases. These defects are normally introduced during processing and fabrication steps. All these defects are capable of acting as stress raisers, and thus deleterious to parent metal’s mechanical behaviour. However, in some cases foreign particles are added purposefully to strengthen the parent material. The procedure is called dispersion hardening where foreign particles act as obstacles to movement of dislocations, which facilitates plastic deformation. The second-phase particles act in two distinct ways – particles are either may be cut by the dislocations or the particles resist cutting and dislocations are
forced to bypass them. Strengthening due to ordered particles is responsible for the good high-temperature strength on many super-alloys. However, pores are detrimental because they reduce effective load bearing area and act as stress concentration sites.

Effects of crystal imperfections and their applications

The crystal imperfections can lead to variation of mechanical, electrical, magnetic and optical properties in a material. The different types of imperfections have their significant impact on the base property of the material. This variation of the properties is utilized to the suitable application in the industry.

A perfect crystal, with every atom of the same type in the correct position, does not exist. All crystals have some defects. Defects contribute to the mechanical properties of metals. In fact, using the term “defect” is sort of a misnomer since these features are commonly intentionally
used to manipulate the mechanical properties of a material. Adding alloying elements to a metal is one way of introducing a crystal defect. Nevertheless, the term “defect” will be used, just keep in mind that crystalline defects are not always bad.

It is important to note at this point that plastic deformation in a material occurs due to the movement of dislocations (linear defects). Millions of dislocations result for plastic forming operations such as rolling and extruding. It is also important to note that any defect in the regular lattice structure disrupts the motion of dislocation, which makes slip or plastic deformation more difficult. These defects not only include the point and planer defects mentioned above, and also other dislocations. Dislocation movement produces additional dislocations, and when dislocations run into each other it often impedes movement of the dislocations. This drives up the force needed to move the dislocation or, in other words, strengthens the material